Ecology Letters
SCOPUS (1998-2023)SCIE-ISI
1461-023X
1461-0248
Anh Quốc
Cơ quản chủ quản: WILEY , Wiley-Blackwell Publishing Ltd
Các bài báo tiêu biểu
Species richness is a fundamental measurement of community and regional diversity, and it underlies many ecological models and conservation strategies. In spite of its importance, ecologists have not always appreciated the effects of abundance and sampling effort on richness measures and comparisons. We survey a series of common pitfalls in quantifying and comparing taxon richness. These pitfalls can be largely avoided by using accumulation and rarefaction curves, which may be based on either individuals or samples. These taxon sampling curves contain the basic information for valid richness comparisons, including category–subcategory ratios (species‐to‐genus and species‐to‐individual ratios). Rarefaction methods – both sample‐based and individual‐based – allow for meaningful standardization and comparison of datasets. Standardizing data sets by area or sampling effort may produce very different results compared to standardizing by number of individuals collected, and it is not always clear which measure of diversity is more appropriate. Asymptotic richness estimators provide lower‐bound estimates for taxon‐rich groups such as tropical arthropods, in which observed richness rarely reaches an asymptote, despite intensive sampling. Recent examples of diversity studies of tropical trees, stream invertebrates, and herbaceous plants emphasize the importance of carefully quantifying species richness using taxon sampling curves.
In the last two decades, interest in species distribution models (SDMs) of plants and animals has grown dramatically. Recent advances in SDMs allow us to potentially forecast anthropogenic effects on patterns of biodiversity at different spatial scales. However, some limitations still preclude the use of SDMs in many theoretical and practical applications. Here, we provide an overview of recent advances in this field, discuss the ecological principles and assumptions underpinning SDMs, and highlight critical limitations and decisions inherent in the construction and evaluation of SDMs. Particular emphasis is given to the use of SDMs for the assessment of climate change impacts and conservation management issues. We suggest new avenues for incorporating species migration, population dynamics, biotic interactions and community ecology into SDMs at multiple spatial scales. Addressing all these issues requires a better integration of SDMs with ecological theory.
The metacommunity concept is an important way to think about linkages between different spatial scales in ecology. Here we review current understanding about this concept. We first investigate issues related to its definition as a set of local communities that are linked by dispersal of multiple potentially interacting species. We then identify four paradigms for metacommunities: the patch‐dynamic view, the species‐sorting view, the mass effects view and the neutral view, that each emphasizes different processes of potential importance in metacommunities. These have somewhat distinct intellectual histories and we discuss elements related to their potential future synthesis. We then use this framework to discuss why the concept is useful in modifying existing ecological thinking and illustrate this with a number of both theoretical and empirical examples. As ecologists strive to understand increasingly complex mechanisms and strive to work across multiple scales of spatio‐temporal organization, concepts like the metacommunity can provide important insights that frequently contrast with those that would be obtained with more conventional approaches based on local communities alone.
Microbes are the unseen majority in soil and comprise a large portion of life’s genetic diversity. Despite their abundance, the impact of soil microbes on ecosystem processes is still poorly understood. Here we explore the various roles that soil microbes play in terrestrial ecosystems with special emphasis on their contribution to plant productivity and diversity. Soil microbes are important regulators of plant productivity, especially in nutrient poor ecosystems where plant symbionts are responsible for the acquisition of limiting nutrients. Mycorrhizal fungi and nitrogen‐fixing bacteria are responsible for
Bài báo này nghiên cứu các tác động tiêu cực và tích cực của việc sử dụng đất nông nghiệp đối với bảo tồn đa dạng sinh học và mối quan hệ của nó với các dịch vụ hệ sinh thái từ quan điểm cảnh quan. Nông nghiệp có thể đóng góp vào việc bảo tồn các hệ thống có độ đa dạng sinh học cao, có thể cung cấp các dịch vụ hệ sinh thái quan trọng như thụ phấn và kiểm soát sinh học thông qua các hiệu ứng bổ sung và khảo sát. Quản lý sử dụng đất thường tập trung vào một số loài và các quy trình địa phương, nhưng trong các cảnh quan nông nghiệp động, chỉ một sự đa dạng của các loài bảo hiểm mới có thể đảm bảo khả năng phục hồi (khả năng tái tổ chức sau sự cố). Các loài tương tác trải nghiệm cảnh quan xung quanh ở những quy mô không gian khác nhau, ảnh hưởng đến các tương tác dinh dưỡng. Cảnh quan có cấu trúc phức tạp nâng cao đa dạng địa phương trong các hệ sinh thái nông nghiệp, có thể bù đắp cho quản lý cường độ cao tại địa phương. Các sinh vật có khả năng phân tán cao dường như là nguyên nhân chính điều khiển các mô hình đa dạng sinh học và các dịch vụ hệ sinh thái, nhờ vào khả năng tái định cư và việc trải nghiệm các nguồn lực lớn hơn. Các chương trình môi trường nông nghiệp (khuyến khích cho nông dân để cải thiện môi trường) cần mở rộng cái nhìn và tính đến các phản ứng khác nhau đối với các chương trình trong các cảnh quan nông nghiệp đơn giản (tác động cao) và phức tạp (tác động thấp). Trong các cảnh quan đơn giản, việc phân bổ nơi sống địa phương quan trọng hơn trong các cảnh quan phức tạp, vốn toàn bộ có nguy cơ. Tuy nhiên, hiểu biết hạn chế về tầm quan trọng tương đối của quản lý địa phương và cảnh quan đối với đa dạng sinh học và mối quan hệ của nó với các dịch vụ hệ sinh thái làm cho việc đưa ra các khuyến nghị đáng tin cậy trở nên khó khăn.
The cycles of the key nutrient elements nitrogen (N) and phosphorus (P) have been massively altered by anthropogenic activities. Thus, it is essential to understand how photosynthetic production across diverse ecosystems is, or is not, limited by N and P. Via a large‐scale meta‐analysis of experimental enrichments, we show that P limitation is equally strong across these major habitats and that N and P limitation are equivalent within both terrestrial and freshwater systems. Furthermore, simultaneous N and P enrichment produces strongly positive synergistic responses in all three environments. Thus, contrary to some prevailing paradigms, freshwater, marine and terrestrial ecosystems are surprisingly similar in terms of N and P limitation.
Studies of local adaptation provide important insights into the power of natural selection relative to gene flow and other evolutionary forces. They are a paradigm for testing evolutionary hypotheses about traits favoured by particular environmental factors. This paper is an attempt to summarize the conceptual framework for local adaptation studies. We first review theoretical work relevant for local adaptation. Then we discuss reciprocal transplant and common garden experiments designed to detect local adaptation in the pattern of deme × habitat interaction for fitness. Finally, we review research questions and approaches to studying the processes of local adaptation – divergent natural selection, dispersal and gene flow, and other processes affecting adaptive differentiation of local demes. We advocate multifaceted approaches to the study of local adaptation, and stress the need for experiments explicitly addressing hypotheses about the role of particular ecological and genetic factors that promote or hinder local adaptation. Experimental evolution of replicated populations in controlled spatially heterogeneous environments allow direct tests of such hypotheses, and thus would be a valuable way to complement research on natural populations.
Many studies in recent years have investigated the effects of climate change on the future of biodiversity. In this review, we first examine the different possible effects of climate change that can operate at individual, population, species, community, ecosystem and biome scales, notably showing that species can respond to climate change challenges by shifting their climatic niche along three non‐exclusive axes: time (e.g. phenology), space (e.g. range) and self (e.g. physiology). Then, we present the principal specificities and caveats of the most common approaches used to estimate future biodiversity at global and sub‐continental scales and we synthesise their results. Finally, we highlight several challenges for future research both in theoretical and applied realms. Overall, our review shows that current estimates are very variable, depending on the method, taxonomic group, biodiversity loss metrics, spatial scales and time periods considered. Yet, the majority of models indicate alarming consequences for biodiversity, with the worst‐case scenarios leading to extinction rates that would qualify as the sixth mass extinction in the history of the earth.
Worldwide decomposition rates depend both on climate and the legacy of plant functional traits as litter quality. To quantify the degree to which functional differentiation among species affects their litter decomposition rates, we brought together leaf trait and litter mass loss data for 818 species from 66 decomposition experiments on six continents. We show that: (i) the magnitude of species‐driven differences is much larger than previously thought and greater than climate‐driven variation; (ii) the decomposability of a species’ litter is consistently correlated with that species’ ecological strategy within different ecosystems globally, representing a new connection between whole plant carbon strategy and biogeochemical cycling. This connection between plant strategies and decomposability is crucial for both understanding vegetation–soil feedbacks, and for improving forecasts of the global carbon cycle.
Concern is growing about the consequences of biodiversity loss for ecosystem functioning, for the provision of ecosystem services, and for human well being. Experimental evidence for a relationship between biodiversity and ecosystem process rates is compelling, but the issue remains contentious. Here, we present the first rigorous quantitative assessment of this relationship through meta‐analysis of experimental work spanning 50 years to June 2004. We analysed 446 measures of biodiversity effects (252 in grasslands), 319 of which involved primary producer manipulations or measurements. Our analyses show that: biodiversity effects are weaker if biodiversity manipulations are less well controlled; effects of biodiversity change on processes are weaker at the ecosystem compared with the community level and are negative at the population level; productivity‐related effects decline with increasing number of trophic links between those elements manipulated and those measured; biodiversity effects on stability measures (‘insurance’ effects) are not stronger than biodiversity effects on performance measures. For those ecosystem services which could be assessed here, there is clear evidence that biodiversity has positive effects on most. Whilst such patterns should be further confirmed, a precautionary approach to biodiversity management would seem prudent in the meantime.