BMC Systems Biology

Công bố khoa học tiêu biểu

* Dữ liệu chỉ mang tính chất tham khảo

Sắp xếp:  
Spatial localization of the first and last enzymes effectively connects active metabolic pathways in bacteria
BMC Systems Biology - Tập 8 - Trang 1-10 - 2014
Pablo Meyer, Guillermo Cecchi, Gustavo Stolovitzky
Although much is understood about the enzymatic cascades that underlie cellular biosynthesis, comparatively little is known about the rules that determine their cellular organization. We performed a detailed analysis of the localization of E.coli GFP-tagged enzymes for cells growing exponentially We found that out of 857 globular enzymes, at least 219 have a discrete punctuate localization in the cytoplasm and catalyze the first or the last reaction in 60% of biosynthetic pathways. A graph-theoretic analysis of E.coli’s metabolic network shows that localized enzymes, in contrast to non-localized ones, form a tree-like hierarchical structure, have a higher within-group connectivity, and are traversed by a higher number of feed-forward and feedback loops than their non-localized counterparts. A Gene Ontology analysis of these enzymes reveals an enrichment of terms related to essential metabolic functions in growing cells. Given that these findings suggest a distinct metabolic role for localization, we studied the dynamics of cellular localization of the cell wall synthesizing enzymes in B. subtilis and found that enzymes localize during exponential growth but not during stationary growth. We conclude that active biochemical pathways inside the cytoplasm are organized spatially following a rule where their first or their last enzymes localize to effectively connect the different active pathways and thus could reflect the activity state of the cell’s metabolic network.
A tree-like Bayesian structure learning algorithm for small-sample datasets from complex biological model systems
BMC Systems Biology - - 2015
Weiwei Yin, Swetha Garimalla, Alberto Moreno, Mary R. Galinski, Mark P. Styczynski
Solving gap metabolites and blocked reactions in genome-scale models: application to the metabolic network of Blattabacterium cuenoti
BMC Systems Biology - Tập 7 - Trang 1-15 - 2013
Miguel Ponce-de-León, Francisco Montero, Juli Peretó
Metabolic reconstruction is the computational-based process that aims to elucidate the network of metabolites interconnected through reactions catalyzed by activities assigned to one or more genes. Reconstructed models may contain inconsistencies that appear as gap metabolites and blocked reactions. Although automatic methods for solving this problem have been previously developed, there are many situations where manual curation is still needed. We introduce a general definition of gap metabolite that allows its detection in a straightforward manner. Moreover, a method for the detection of Unconnected Modules, defined as isolated sets of blocked reactions connected through gap metabolites, is proposed. The method has been successfully applied to the curation of iCG238, the genome-scale metabolic model for the bacterium Blattabacterium cuenoti, obligate endosymbiont of cockroaches. We found the proposed approach to be a valuable tool for the curation of genome-scale metabolic models. The outcome of its application to the genome-scale model B. cuenoti iCG238 is a more accurate model version named as B. cuenoti iMP240.
A systematic design method for robust synthetic biology to satisfy design specifications
BMC Systems Biology - Tập 3 - Trang 1-18 - 2009
Bor-Sen Chen, Chih-Hung Wu
Synthetic biology is foreseen to have important applications in biotechnology and medicine, and is expected to contribute significantly to a better understanding of the functioning of complex biological systems. However, the development of synthetic gene networks is still difficult and most newly created gene networks are non-functioning due to intrinsic parameter uncertainties, external disturbances and functional variations of intra- and extra-cellular environments. The design method for a robust synthetic gene network that works properly in a host cell under these intrinsic parameter uncertainties and external disturbances is the most important topic in synthetic biology. In this study, we propose a stochastic model that includes parameter fluctuations and external disturbances to mimic the dynamic behaviors of a synthetic gene network in the host cell. Then, based on this stochastic model, four design specifications are introduced to guarantee that a synthetic gene network can achieve its desired steady state behavior in spite of parameter fluctuations, external disturbances and functional variations in the host cell. We propose a systematic method to select a set of appropriate design parameters for a synthetic gene network that will satisfy these design specifications so that the intrinsic parameter fluctuations can be tolerated, the external disturbances can be efficiently filtered, and most importantly, the desired steady states can be achieved. Thus the synthetic gene network can work properly in a host cell under intrinsic parameter uncertainties, external disturbances and functional variations. Finally, a design procedure for the robust synthetic gene network is developed and a design example is given in silico to confirm the performance of the proposed method. Based on four design specifications, a systematic design procedure is developed for designers to engineer a robust synthetic biology network that can achieve its desired steady state behavior under parameter fluctuations, external disturbances and functional variations in the host cell. Therefore, the proposed systematic design method has good potential for the robust synthetic gene network design.
Oxygen dependence of metabolic fluxes and energy generation of Saccharomyces cerevisiae CEN.PK113-1A
BMC Systems Biology - - 2008
Paula Jouhten, Eija Rintala, Anne Huuskonen, Anu Tamminen, Mervi Toivari, Marilyn G. Wiebe, Laura Ruohonen, Merja Penttilä, Hannu Maaheimo
Modeling mutant phenotypes and oscillatory dynamics in the Saccharomyces cerevisiae cAMP-PKA pathway
BMC Systems Biology - Tập 7 - Trang 1-16 - 2013
Kevin Gonzales, Ömür Kayıkçı, David G Schaeffer, Paul M Magwene
The cyclic AMP-Protein Kinase A (cAMP-PKA) pathway is an evolutionarily conserved signal transduction mechanism that regulates cellular growth and differentiation in animals and fungi. We present a mathematical model that recapitulates the short-term and long-term dynamics of this pathway in the budding yeast, Saccharomyces cerevisiae. Our model is aimed at recapitulating the dynamics of cAMP signaling for wild-type cells as well as single (pde1 Δ and pde2 Δ) and double (pde1 Δ pde2 Δ) phosphodiesterase mutants. Our model focuses on PKA-mediated negative feedback on the activity of phosphodiesterases and the Ras branch of the cAMP-PKA pathway. We show that both of these types of negative feedback are required to reproduce the wild-type signaling behavior that occurs on both short and long time scales, as well as the the observed responses of phosphodiesterase mutants. A novel feature of our model is that, for a wide range of parameters, it predicts that intracellular cAMP concentrations should exhibit decaying oscillatory dynamics in their approach to steady state following glucose stimulation. Experimental measurements of cAMP levels in two genetic backgrounds of S. cerevisiae confirmed the presence of decaying cAMP oscillations as predicted by the model. Our model of the cAMP-PKA pathway provides new insights into how yeast respond to alterations in their nutrient environment. Because the model has both predictive and explanatory power it will serve as a foundation for future mathematical and experimental studies of this important signaling network.
Modeling the Calvin-Benson cycle
BMC Systems Biology - Tập 5 - Trang 1-13 - 2011
Jiri Jablonsky, Hermann Bauwe, Olaf Wolkenhauer
Modeling the Calvin-Benson cycle has a history in the field of theoretical biology. Anyone who intends to model this system will look at existing models to adapt, refine and improve them. With the goal to study the regulation of carbon metabolism, we investigated a broad range of relevant models for their suitability to provide the basis for further modeling efforts. Beyond a critical analysis of existing models, we furthermore investigated the question how adjacent metabolic pathways, for instance photorespiration, can be integrated in such models. Our analysis reveals serious problems with a range of models that are publicly available and widely used. The problems include the irreproducibility of the published results or significant differences between the equations in the published description of the model and model itself in the supplementary material. In addition to and based on the discussion of existing models, we furthermore analyzed approaches in PGA sink implementation and confirmed a weak relationship between the level of its regulation and efficiency of PGA export, in contrast to significant changes in the content of metabolic pool within the Calvin-Benson cycle. In our study we show that the existing models that have been investigated are not suitable for reuse without substantial modifications. We furthermore show that the minor adjacent pathways of the carbon metabolism, neglected in all kinetic models of Calvin-Benson cycle, cannot be substituted without consequences in the mass production dynamics. We further show that photorespiration or at least its first step (O2 fixation) has to be implemented in the model if this model is aimed for analyses out of the steady state.
An integrative approach for measuring semantic similarities using gene ontology
BMC Systems Biology - Tập 8 - Trang 1-12 - 2014
Jiajie Peng, Hongxiang Li, Qinghua Jiang, Yadong Wang, Jin Chen
Gene Ontology (GO) provides rich information and a convenient way to study gene functional similarity, which has been successfully used in various applications. However, the existing GO based similarity measurements have limited functions for only a subset of GO information is considered in each measure. An appropriate integration of the existing measures to take into account more information in GO is demanding. We propose a novel integrative measure called InteGO 2 to automatically select appropriate seed measures and then to integrate them using a metaheuristic search method. The experiment results show that InteGO 2 significantly improves the performance of gene similarity in human, Arabidopsis and yeast on both molecular function and biological process GO categories. InteGO 2 computes gene-to-gene similarities more accurately than tested existing measures and has high robustness. The supplementary document and software are available at http://mlg.hit.edu.cn:8082/ .
Inference of gene regulatory networks from time series by Tsallis entropy
BMC Systems Biology - Tập 5 Số 1 - 2011
Fabrício Martins Lopes, Evaldo Araújo de Oliveira, Roberto M. César
Putative human sperm Interactome: a networks study
BMC Systems Biology - Tập 12 - Trang 1-10 - 2018
Alessandra Ordinelli, Nicola Bernabò, Massimiliano Orsini, Mauro Mattioli, Barbara Barboni
For over sixty years, it has been known that mammalian spermatozoa immediately after ejaculation are virtually infertile. They became able to fertilize only after they reside for long time (hours to days) within female genital tract where they complete their functional maturation, the capacitation. This process is finely regulated by the interaction with the female environment and involves, in spermatozoa, a myriad of molecules as messengers and target of signals. Since, to date, a model able to represent the molecular interaction that characterize sperm physiology does not exist, we realized the Human Sperm Interactme Network3.0 (HSIN3.0) and its main component (HSNI3.0_MC), starting from the pathway active in male germ cells. HSIN3.0 and HSIN3.0_MC are scale free networks, adherent to the Barabasi-Albert model, and are characterised by an ultra-small world topology. We found that they are resistant to random attacks and that are designed to respond quickly and specifically to external inputs. In addition, it has been possible to identify the most connected nodes (the hubs) and the bottlenecks nodes. This result allowed us to explore the control mechanisms active in driving sperm biochemical machinery and to verify the different levels of controls: party vs. date hubs and hubs vs. bottlenecks, thanks the availability of data from KO mice. Finally, we found that several key nodes represent molecules specifically involved in function that are thought to be not present or not active in sperm cells, such as control of cell cycle, proteins synthesis, nuclear trafficking, and immune response, thus potentially open new perspectives on the study of sperm biology. For the first time we present a network representing putative human sperm interactome. This result gives very intriguing biological information and could contribute to the knowledge of spermatozoa, either in physiological or pathological conditions.
Tổng số: 1,408   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 10