Network component analysis provides quantitative insights on an Arabidopsis transcription factor-gene regulatory network
Tóm tắt
Gene regulatory networks (GRNs) are models of molecule-gene interactions instrumental in the coordination of gene expression. Transcription factor (TF)-GRNs are an important subset of GRNs that characterize gene expression as the effect of TFs acting on their target genes. Although such networks can qualitatively summarize TF-gene interactions, it is highly desirable to quantitatively determine the strengths of the interactions in a TF-GRN as well as the magnitudes of TF activities. To our knowledge, such analysis is rare in plant biology. A computational methodology developed for this purpose is network component analysis (NCA), which has been used for studying large-scale microbial TF-GRNs to obtain nontrivial, mechanistic insights. In this work, we employed NCA to quantitatively analyze a plant TF-GRN important in floral development using available regulatory information from AGRIS, by processing previously reported gene expression data from four shoot apical meristem cell types. The NCA model satisfactorily accounted for gene expression measurements in a TF-GRN of seven TFs (LFY, AG, SEPALLATA3 [SEP3], AP2, AGL15, HY5 and AP3/PI) and 55 genes. NCA found strong interactions between certain TF-gene pairs including LFY → MYB17, AG → CRC, AP2 → RD20, AGL15 → RAV2 and HY5 → HLH1, and the direction of the interaction (activation or repression) for some AGL15 targets for which this information was not previously available. The activity trends of four TFs - LFY, AG, HY5 and AP3/PI as deduced by NCA correlated well with the changes in expression levels of the genes encoding these TFs across all four cell types; such a correlation was not observed for SEP3, AP2 and AGL15. For the first time, we have reported the use of NCA to quantitatively analyze a plant TF-GRN important in floral development for obtaining nontrivial information about connectivity strengths between TFs and their target genes as well as TF activity. However, since NCA relies on documented connectivity information about the underlying TF-GRN, it is currently limited in its application to larger plant networks because of the lack of documented connectivities. In the future, the identification of interactions between plant TFs and their target genes on a genome scale would allow the use of NCA to provide quantitative regulatory information about plant TF-GRNs, leading to improved insights on cellular regulatory programs.
Tài liệu tham khảo
van Someren E, Wessels L, Backer E, Reinders M: Genetic network modeling. Pharmacogenomics. 2002, 3: 507-525. 10.1517/14622416.3.4.507.
Karlebach G, Shamir R: Modelling and analysis of gene regulatory networks. Nat Rev Mol Cell Biol. 2008, 9: 770-780. 10.1038/nrm2503.
Markowetz F, Spang R: Inferring cellular networks – a review. BMC Bioinformatics. 2007, 8 (Suppl 6): S5-10.1186/1471-2105-8-S6-S5.
Moreno-Risueno MA, Busch W, Benfey PN: Omics meet networks – using systems approaches to infer regulatory networks in plants. Curr Opin Plant Biol. 2010, 13: 126-131. 10.1016/j.pbi.2009.11.005.
Schlitt T, Brazma A: Current approaches to gene regulatory network modelling. BMC Bioinformatics. 2007, 8 (Suppl 6): S9-10.1186/1471-2105-8-S6-S9.
De Jong H: Modeling and simulation of genetic regulatory systems: a literature review. J Comput Biol. 2002, 9: 67-103. 10.1089/10665270252833208.
Bezerianos A, Maraziotis IA: Computational models reconstruct gene regulatory networks. Mol Biosyst. 2008, 4: 993-1000. 10.1039/b800446n.
Li Z, Shaw SM, Yedwabnick MJ, Chan C: Using a state-space model with hidden variables to infer transcription factor activities. Bioinformatics. 2006, 22: 747-754. 10.1093/bioinformatics/btk034.
Long TA, Brady SM, Benfey PN: Systems approaches to identifying gene regulatory networks in plants. Annu Rev Cell Dev Biol. 2008, 24: 81-103. 10.1146/annurev.cellbio.24.110707.175408.
Mussel C, Hopfensitz M, Kestler HA: BoolNet–an R package for generation, reconstruction and analysis of Boolean networks. Bioinformatics. 2010, 26: 1378-1380. 10.1093/bioinformatics/btq124.
Baldan P, Cocco N, Marin A, Simeoni M: Petri nets for modelling metabolic pathways: a survey. Nat Comput. 9: 955-989.
Babu MM, Luscombe NM, Aravind L, Gerstein M, Teichmann SA: Structure and evolution of transcriptional regulatory networks. Curr Opin Struct Biol. 2004, 14: 283-291. 10.1016/j.sbi.2004.05.004.
Gama-Castro S, Salgado H, Peralta-Gil M, Santos-Zavaleta A, Muniz-Rascado L, Solano-Lira H, Jimenez-Jacinto V, Weiss V, Garcia-Sotelo JS, Lopez-Fuentes A, Porron-Sotelo L, Alquicira-Hernandez S, Medina-Rivera A, Martinez-Flores I, Alquicira-Hernandez K, Martinez-Adame R, Bonavides-Martinez C, Miranda-Rios J, Huerta AM, Mendoza-Vargas A, Collado-Torres L, Taboada B, Vega-Alvarado L, Olvera M, Olvera L, Grande R, Morett E, Collado-Vides J: RegulonDB version 7.0: transcriptional regulation of Escherichia coli K-12 integrated within genetic sensory response units (Gensor Units). Nucleic Acids Res. 2011, 39 (Database issue): 98-105.
Makita Y, Nakao M, Ogasawara N, Nakai K: DBTBS: database of transcriptional regulation in Bacillus subtilis and its contribution to comparative genomics. Nucleic Acids Res. 2004, 32 (Database issue): D75-D77.
Novichkov PS, Laikova ON, Novichkova ES, Gelfand MS, Arkin AP, Dubchak I, Rodionov DA: RegPrecise: a database of curated genomic inferences of transcriptional regulatory interactions in prokaryotes. Nucleic Acids Res. 2010, 38 (suppl 1): D111-D118.
Abdulrehman D, Monteiro PT, Teixeira MC, Mira NP, Lourenço AB, dos Santos SC, Cabrito TR, Francisco AP, Madeira SC, Aires RS, Oliveira AL, Sá-Correia I, Freitas AT: YEASTRACT: providing a programmatic access to curated transcriptional regulatory associations in Saccharomyces cerevisiae through a web services interface. Nucleic Acids Res. 2011, 39 (suppl 1): D136-D140.
Middleton AM, Farcot E, Owen MR, Vernoux T: Modeling regulatory networks to understand plant development: small is beautiful. Plant Cell Online. 2012, 24: 3876-3891. 10.1105/tpc.112.101840.
Alvarez-Buylla ER, Benitez M, Davila EB, Chaos A, Espinosa-Soto C, Padilla-Longoria P: Gene regulatory network models for plant development. Curr Opin Plant Biol. 2007, 10: 83-91. 10.1016/j.pbi.2006.11.008.
Palaniswamy SK, James S, Sun H, Lamb RS, Davuluri RV, Grotewold E: AGRIS and AtRegNet. A platform to link cis-regulatory elements and transcription factors into regulatory networks. Plant Physiol. 2006, 140: 818-829. 10.1104/pp.105.072280.
Bintu L, Buchler NE, Garcia HG, Gerland U, Hwa T, Kondev J, Phillips R: Transcriptional regulation by the numbers: models. Curr Opin Genet Dev. 2005, 15: 116-124. 10.1016/j.gde.2005.02.007.
Zhao Y, Granas D, Stormo GD: Inferring binding energies from selected binding sites. PLoS Comput Biol. 2009, 5: e1000590-10.1371/journal.pcbi.1000590.
Turner D, Kim R, Guo J: TFinDit: transcription factor-DNA interaction data depository. BMC Bioinformatics. 2012, 13: 220-10.1186/1471-2105-13-220.
He X, Samee MAH, Blatti C, Sinha S: Thermodynamics-based models of transcriptional regulation by enhancers: the roles of synergistic activation. Cooperative binding and short-range repression. PLoS Comput Biol. 2010, 6: e1000935-10.1371/journal.pcbi.1000935.
Geertz M, Maerkl SJ: Experimental strategies for studying transcription factor-DNA binding specificities. Briefings Funct Genomics. 2010, 9: 362-373. 10.1093/bfgp/elq023.
Prabakaran P, An J, Gromiha MM, Selvaraj S, Uedaira H, Kono H, Sarai A: Thermodynamic database for protein–nucleic acid interactions (ProNIT). Bioinformatics. 2001, 17: 1027-1034. 10.1093/bioinformatics/17.11.1027.
Liao JC, Boscolo R, Yang Y-L, Tran LM, Sabatti C, Roychowdhury VP: Network component analysis: reconstruction of regulatory signals in biological systems. Proc Natl Acad Sci U S A. 2003, 100: 15522-15527. 10.1073/pnas.2136632100.
Kao KC, Yang Y-L, Boscolo R, Sabatti C, Roychowdhury V, Liao JC: Transcriptome-based determination of multiple transcription regulator activities in Escherichia coli by using network component analysis. Proc Natl Acad Sci. 2004, 101: 641-646. 10.1073/pnas.0305287101.
Kao KC, Tran LM, Liao JC: A global regulatory role of gluconeogenic genes in escherichia coli revealed by transcriptome network analysis. J Biol Chem. 2005, 280: 36079-36087. 10.1074/jbc.M508202200.
Roven C, Bussemaker HJ: REDUCE: an online tool for inferring cis-regulatory elements and transcriptional module activities from microarray data. Nucleic Acids Res. 2003, 31: 3487-3490. 10.1093/nar/gkg630.
Galbraith SJ, Tran LM, Liao JC: Transcriptome network component analysis with limited microarray data. Bioinformatics. 2006, 22: 1886-1894. 10.1093/bioinformatics/btl279.
Hyduke DR, Jarboe LR, Tran LM, Chou KJY, Liao JC: Integrated network analysis identifies nitric oxide response networks and dihydroxyacid dehydratase as a crucial target in Escherichia coli. Proc Natl Acad Sci. 2007, 104: 8484-8489. 10.1073/pnas.0610888104.
Jarboe LR, Hyduke DR, Tran LM, Chou KJY, Liao JC: Determination of the Escherichia coli S-Nitrosoglutathione response network using integrated biochemical and systems analysis. J Biol Chem. 2008, 283: 5148-5157.
Brynildsen MP, Liao JC: An integrated network approach identifies the isobutanol response network of Escherichia coli. Mol Syst Biol. 2009, 5: 277-
Buescher JM, Liebermeister W, Jules M, Uhr M, Muntel J, Botella E, Hessling B, Kleijn RJ, Chat LL, Lecointe F, Mäder U, Nicolas P, Piersma S, Rügheimer F, Becher D, Bessieres P, Bidnenko E, Denham EL, Dervyn E, Devine KM, Doherty G, Drulhe S, Felicori L, Fogg MJ, Goelzer A, Hansen A, Harwood CR, Hecker M, Hubner S, Hultschig C, et al: Global network reorganization during dynamic adaptations of Bacillus subtilis metabolism. Science. 2012, 335: 1099-1103. 10.1126/science.1206871.
Sriram G, Parr LS, Rahib L, Liao JC, Dipple KM: Moonlighting function of glycerol kinase causes systems-level changes in rat hepatoma cells. Metab Eng. 2010, 12: 332-340. 10.1016/j.ymben.2010.04.001.
Sriram G, Martinez JA, McCabe ERB, Liao JC, Dipple KM: Single-gene disorders: what role could moonlighting enzymes play?. Am J Hum Genet. 2005, 76: 911-924. 10.1086/430799.
Tran LM, Chang C-J, Plaisier S, Wu S, Dang J, Mischel PS, Liao JC, Graeber TG, Wu H: Determining PTEN functional status by network component deduced transcription factor activities. PLoS One. 2012, 7: e31053-10.1371/journal.pone.0031053.
Yadav RK, Girke T, Pasala S, Xie M, Reddy GV: Gene expression map of the Arabidopsis shoot apical meristem stem cell niche. Proc Natl Acad Sci. 2009, 106: 4941-4946. 10.1073/pnas.0900843106.
Toufighi K, Brady SM, Austin R, Ly E, Provart NJ: The botany array resource: e-northerns, expression angling, and promoter analyses. Plant J. 2005, 43: 153-163. 10.1111/j.1365-313X.2005.02437.x.
Chang C, Ding Z, Hung YS, Fung PCW: Fast network component analysis (FastNCA) for gene regulatory network reconstruction from microarray data. Bioinformatics. 2008, 24: 1349-1358. 10.1093/bioinformatics/btn131.
Weigel D, Meyerowitz EM: The ABCs of floral homeotic genes. Cell. 1994, 78: 203-209. 10.1016/0092-8674(94)90291-7.
Causier B, Schwarz-Sommer Z, Davies B: Floral organ identity: 20 years of ABCs. Semin Cell Dev Biol. 2010, 21: 73-79. 10.1016/j.semcdb.2009.10.005.
Theißen G: Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol. 2001, 4: 75-85. 10.1016/S1369-5266(00)00139-4.
Siriwardana NS, Lamb RS: The poetry of reproduction: the role of LEAFY in Arabidopsis thaliana flower formation. Int J Dev Biol. 2012, 56: 207-221. 10.1387/ijdb.113450ns.
William DA, Su Y, Smith MR, Lu M, Baldwin DA, Wagner D: Genomic identification of direct target genes of LEAFY. Proc Natl Acad Sci U S A. 2004, 101: 1775-1780. 10.1073/pnas.0307842100.
Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM: LEAFY controls floral meristem identity in Arabidopsis. Cell. 1992, 69: 843-859. 10.1016/0092-8674(92)90295-N.
Swarbreck D, Wilks C, Lamesch P, Berardini TZ, Garcia-Hernandez M, Foerster H, Li D, Meyer T, Muller R, Ploetz L, Radenbaugh A, Singh S, Swing V, Tissier C, Zhang P, Huala E: The Arabidopsis Information Resource (TAIR): gene structure and function annotation. Nucleic Acids Res. 2008, 36 (suppl 1): D1009-D1014.
Adamczyk BJ, Lehti-Shiu MD, Fernandez DE: The MADS domain factors AGL15 and AGL18 act redundantly as repressors of the floral transition in Arabidopsis. Plant J Cell Mol Biol. 2007, 50: 1007-1019. 10.1111/j.1365-313X.2007.03105.x.
Gregis V, Andrés F, Sessa A, Guerra RF, Simonini S, Mateos JL, Torti S, Zambelli F, Prazzoli GM, Bjerkan KN, Grini PE, Pavesi G, Colombo L, Coupland G, Kater MM: Identification of pathways directly regulated by Short Vegetative Phase during vegetative and reproductive development in Arabidopsis. Genome Biol. 2013, 14: R56-10.1186/gb-2013-14-6-r56.
Gregis V, Sessa A, Colombo L, Kater MM: AGAMOUS-LIKE24 and SHORT VEGETATIVE PHASE determine floral meristem identity in Arabidopsis. Plant J. 2008, 56: 891-902. 10.1111/j.1365-313X.2008.03648.x.
Pastore JJ, Limpuangthip A, Yamaguchi N, Wu M-F, Sang Y, Han S-K, Malaspina L, Chavdaroff N, Yamaguchi A, Wagner D: LATE MERISTEM IDENTITY2 acts together with LEAFY to activate APETALA1. Development. 2011, 138: 3189-3198. 10.1242/dev.063073.
Riechmann JL, Ratcliffe OJ: A genomic perspective on plant transcription factors. Curr Opin Plant Biol. 2000, 3: 423-434. 10.1016/S1369-5266(00)00107-2.
Wilczynski B, Furlong EEM: Challenges for modeling global gene regulatory networks during development: Insights from Drosophila. Dev Biol. 2010, 340: 161-169. 10.1016/j.ydbio.2009.10.032.
Wang J, Haubrock M, Cao K-M, Hua X, Zhang C-Y, Wingender E, Li J: Regulatory coordination of clustered microRNAs based on microRNA-transcription factor regulatory network. BMC Syst Biol. 2011, 5: 199-10.1186/1752-0509-5-199.
Lin C-C, Chen Y-J, Chen C-Y, Oyang Y-J, Juan H-F, Huang H-C: Crosstalk between transcription factors and microRNAs in human protein interaction network. BMC Syst Biol. 2012, 6: 18-10.1186/1752-0509-6-18.
Croft L, Szklarczyk D, Jensen LJ, Gorodkin J: Multiple independent analyses reveal only transcription factors as an enriched functional class associated with microRNAs. BMC Syst Biol. 2012, 6: 90-10.1186/1752-0509-6-90.