Natural selection governs local, but not global, evolutionary gene coexpression networks in Caenorhabditis elegans
Tóm tắt
Large-scale evaluation of gene expression variation among Caenorhabditis elegans lines that have diverged from a common ancestor allows for the analysis of a novel class of biological networks – evolutionary gene coexpression networks. Comparative analysis of these evolutionary networks has the potential to uncover the effects of natural selection in shaping coexpression network topologies since C. elegans mutation accumulation (MA) lines evolve essentially free from the effects of natural selection, whereas natural isolate (NI) populations are subject to selective constraints. We compared evolutionary gene coexpression networks for C. elegans MA lines versus NI populations to evaluate the role that natural selection plays in shaping the evolution of network topologies. MA and NI evolutionary gene coexpression networks were found to have very similar global topological properties as measured by a number of network topological parameters. Observed MA and NI networks show node degree distributions and average values for node degree, clustering coefficient, path length, eccentricity and betweeness that are statistically indistinguishable from one another yet highly distinct from randomly simulated networks. On the other hand, at the local level the MA and NI coexpression networks are highly divergent; pairs of genes coexpressed in the MA versus NI lines are almost entirely different as are the connectivity and clustering properties of individual genes. It appears that selective forces shape how local patterns of coexpression change over time but do not control the global topology of C. elegans evolutionary gene coexpression networks. These results have implications for the evolutionary significance of global network topologies, which are known to be conserved across disparate complex systems.
Tài liệu tham khảo
Gu Z, Nicolae D, Lu HH, Li WH: Rapid divergence in expression between duplicate genes inferred from microarray data. Trends Genet. 2002, 18: 609-613. 10.1016/S0168-9525(02)02837-8
Luscombe NM, Babu MM, Yu H, Snyder M, Teichmann SA, Gerstein M: Genomic analysis of regulatory network dynamics reveals large topological changes. Nature. 2004, 431: 308-312. 10.1038/nature02782
Makova KD, Li WH: Divergence in the spatial pattern of gene expression between human duplicate genes. Genome Res. 2003, 13: 1638-1645. 10.1101/gr.1133803
Agrawal H: Extreme self-organization in networks constructed from gene expression data. Phys Rev Lett. 2002, 89: 268702- 10.1103/PhysRevLett.89.268702
Bergmann S, Ihmels J, Barkai N: Similarities and differences in genome-wide expression data of six organisms. PLoS Biol. 2004, 2: E9- 10.1371/journal.pbio.0020009
Tsaparas P, Marino-Ramirez L, Bodenreider O, Koonin EV, Jordan IK: Global similarity and local divergence in human and mouse gene co-expression networks. BMC Evol Biol. 2006, 6: 70- 10.1186/1471-2148-6-70
Barabasi AL, Oltvai ZN: Network biology: understanding the cell's functional organization. Nat Rev Genet. 2004, 5: 101-113. 10.1038/nrg1272
Keller EF: Revisiting "scale-free" networks. Bioessays. 2005, 27: 1060-1068. 10.1002/bies.20294
Denver DR, Morris K, Streelman JT, Kim SK, Lynch M, Thomas WK: The transcriptional consequences of mutation and natural selection in Caenorhabditis elegans. Nat Genet. 2005, 37: 544-548. 10.1038/ng1554
Vassilieva LL, Hook AM, Lynch M: The fitness effects of spontaneous mutations in Caenorhabditis elegans. Evolution. 2000, 54 (4): 1234-1246.
Jordan IK, Marino-Ramirez L, Koonin EV: Evolutionary significance of gene expression divergence. Gene. 2005, 345: 119-126. 10.1016/j.gene.2004.11.034
Jordan IK, Marino-Ramirez L, Wolf YI, Koonin EV: Conservation and coevolution in the scale-free human gene coexpression network. Mol Biol Evol. 2004, 21: 2058-2070. 10.1093/molbev/msh222
Liao BY, Zhang J: Evolutionary conservation of expression profiles between human and mouse orthologous genes. Mol Biol Evol. 2006, 23: 530-540. 10.1093/molbev/msj054
Rifkin SA, Houle D, Kim J, White KP: A mutation accumulation assay reveals a broad capacity for rapid evolution of gene expression. Nature. 2005, 438: 220-223. 10.1038/nature04114
Dunne JA, Williams RJ, Martinez ND: Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecology Letters. 2002, 5:
Montoya JM, Pimm SL, Sole RV: Ecological networks and their fragility. Nature. 2006, 442: 259-264. 10.1038/nature04927
Kim SK, Lund J, Kiraly M, Duke K, Jiang M, Stuart JM, Eizinger A, Wylie BN, Davidson GS: A gene expression map for Caenorhabditis elegans. Science. 2001, 293: 2087-2092. 10.1126/science.1061603
Barabasi AL: Linked: the new science of networks. 2002, Cambridge: Perseus
Wolf YI, Karev G, Koonin EV: Scale-free networks in biology: new insights into the fundamentals of evolution?. Bioessays. 2002, 24: 105-109. 10.1002/bies.10059
Lun L, David A, Walter W, John D: A first-principles approach to understanding the internet's router-level topology. Proceedings of the 2004 conference on Applications, technologies, architectures, and protocols for computer communications. 2004, Portland: ACM Press
Karev GP, Wolf YI, Rzhetsky AY, Berezovskaya FS, Koonin EV: Birth and death of protein domains: a simple model of evolution explains power law behavior. BMC Evol Biol. 2002, 2: 18- 10.1186/1471-2148-2-18
Koonin EV, Wolf YI, Karev GP: The structure of the protein universe and genome evolution. Nature. 2002, 420: 218-223. 10.1038/nature01256
Lynch M: The evolution of genetic networks by non-adaptive processes. Nat Rev Genet. 2007, 8: 803-813. 10.1038/nrg2192
Yip KY, Yu H, Kim PM, Schultz M, Gerstein M: The tYNA platform for comparative interactomics: a web tool for managing, comparing and mining multiple networks. Bioinformatics. 2006, 22: 2968-2970. 10.1093/bioinformatics/btl488