Antonie van Leeuwenhoek

Công bố khoa học tiêu biểu

* Dữ liệu chỉ mang tính chất tham khảo

Sắp xếp:  
Brevibacillus as a biological tool: a short review
Antonie van Leeuwenhoek - Tập 105 - Trang 623-639 - 2014
Amrita Kumari Panda, Satpal Singh Bisht, Surajit DeMondal, N. Senthil Kumar, G. Gurusubramanian, Ashok Kumar Panigrahi
The significance of Brevibacillus has been documented scientifically in the published literature and commercially in heterologous recombinant protein catalogs. Brevibacillus is one of the most widespread genera of Gram-positive bacteria, recorded from the diverse environmental habitats. The high growth rate, better transformation efficiency by electroporation, availability of shuttle vectors, production of negligible amount of extracellular protease, and the constitutive expression of heterologous proteins make some strains of this genus excellent laboratory models. Regarding biotechnological applications, this genus continues to be a source of various enzymes of great biotechnological interest due to their ability to biodegrade low density polyethylene, ability to act as a candidate bio-control agent, and more recently acknowledged as a tool for the overexpression. This article reviews the properties of Brevibacillus spp. as better biological tools with varied applications.
Structural alteration of linear plasmids encoding the genes for polychlorinated biphenyl degradation in Rhodococcus strain RHA1
Antonie van Leeuwenhoek - Tập 74 - Trang 169-173 - 1998
Masao Fukuda, Satoru Shimizu, Noriko Okita, Masashi Seto, Eiji Masai
Polychlorinated biphenyl (PCB) tolerant derivatives of a strong PCB degrader, Rhodococcus strain RHA1, were selected after growth in the presence of 100 μg/ml PCBs. Some of the derivatives did not grow on biphenyl but accumulated a yellow coloured metabolite suggesting a defect in the meta-ring-cleavage compound hydrolase step encoded by the bphD gene. Other derivatives failed to grow on biphenyl and exhibited little PCB transformation activity suggesting a defect in the initial ring-hydroxylation dioxygenase step encoded by the bphA gene. These organisms had a structural alteration in the linear plasmids coding for the bph genes in RHA1, which included the bph gene deletion. When a bphD containing plasmid was introduced into a tolerant derivative, RCD1, which was shown to have a bphD deletion, the defect in the growth on biphenyl of RCD1 was overcome. The bph gene deletion seems to play a key role in these tolerant derivatives thereby suggesting that the toxic metabolic intermediate would be a main cause of the growth inhibition of RHA1 in the presence of high concentration PCBs.
Synthesis of chitin by particulate preparations from Aspergillus flavus
Antonie van Leeuwenhoek - Tập 42 - Trang 261-276 - 1976
E. López-Romero, J. Ruiz-Herrera
Cell-free extracts from Aspergillus flavus catalyzed the synthesis of chitin from UDP-GlcNAc. Most of the activity was associated with membrane-rich fractions whereas no activity was detected in the cell walls. Chitin synthetase was activated by fungal acid proteases; animal and plant proteases destroyed it. Upon incubation at 0 C and 28 C chitin synthetase was inactivated, probably by the action of proteases present in the particulate preparations. Maximal activity was obtained at pH 6.6–7.1 and 15 C. Arrhenius plot showed a biphasic curve with the transition at 7 C. E values were 3300 Kcal/mole above this temperature and 15500 Kcal/mole below it. The enzyme was activated by GlcNAc and required a divalent metal, the most active being Mg++. By plotting v vs UDP-GlcNAc concentration a sigmoidal curve was obtained. Km calculated at high substrate concentrations was 20mm. Chitin synthetase was competitively inhibited by polyoxin D (Ki 6.5 μm) and UDP (Ki 1.35mm), the latter giving complex kinetics.
Antimycobacterial activity in vitro of pigments isolated from Antarctic bacteria
Antonie van Leeuwenhoek - Tập 98 - Trang 531-540 - 2010
Nazia Mojib, Rachel Philpott, Jonathan P. Huang, Michael Niederweis, Asim K. Bej
In this study, we describe the antimycobacterial activity of two pigments, violacein, a purple violet pigment from Janthinobacterium sp. Ant5-2 (J-PVP), and flexirubin, a yellow-orange pigment from Flavobacterium sp. Ant342 (F-YOP). These pigments were isolated from bacterial strains found in the land-locked freshwater lakes of Schirmacher Oasis, East Antarctica. The minimum inhibitory concentrations (MICs) of these pigments for avirulent and virulent mycobacteria were determined by the microplate Alamar Blue Assay (MABA) and Nitrate Reductase Assay (NRA). Results indicated that the MICs of J-PVP and F-YOP were 8.6 and 3.6 μg/ml for avirulent Mycobacterium smegmatis mc2155; 5 and 2.6 μg/ml for avirulent Mycobacterium tuberculosis mc26230; and 34.4 and 10.8 μg/ml for virulent M. tuberculosis H37Rv, respectively. J-PVP exhibited a ~15 times lower MIC for Mycobacterium sp. than previously reported for violacein pigment from Chromobacterium violaceum, while the antimycobacterial effect of F-YOP remains undocumented. Our results indicate these pigments isolated from Antarctic bacteria might be valuable lead compounds for new antimycobacterial drugs used for chemotherapy of tuberculosis.
Application of whole cell rhodococcal biocatalysts in acrylic polymer manufacture
Antonie van Leeuwenhoek - Tập 74 - Trang 107-118 - 1998
Jonathan Hughes, Yvonne C. Armitage, Kenneth C. Symes
Rhodococci are ubiquitous in nature and their ability to metabolise a wide range of chemicals, many of which are toxic, has given rise to an increasing number of studies into their diverse use as biocatalysts. Indeed rhodococci have been shown to be especially good at degrading aromatic and aliphatic nitriles and amides and thus they are very useful for waste clean up where these toxic chemicals are present. The use of biocatalysts in the chemical industry has in the main been for the manufacture of high-value fine chemicals, such as pharmaceutical intermediates, though investigations into the use of nitrile hydratase, amidase and nitrilase to convert acrylonitrile into the higher value products acrylamide and acrylic acid have been carried out for a number of years. Acrylamide and acrylic acid are manufactured by chemical processes in vast tonnages annually and they are used to produce polymers for applications such as superabsorbents, dispersants and flocculants. Rhodococci are chosen for use as biocatalysts on an industrial scale for the production of acrylamide and acrylic acid due to their ease of growth to high biomass yields, high specific enzyme activities obtainable, their EFB class 1 status and robustness of the whole cells within chemical reaction systems. Several isolates belonging to the genus Rhodococcus have been shown in our studies to be among the best candidates for acrylic acid preparation from acrylonitrile due to their stability and tolerance to high concentrations of this reactive and disruptive substrate. A critical part of the selection procedure for the best candidates during the screening programme was high purity product with very low residual substrate concentrations, even in the presence of high product concentrations. Additionally the nitrile and amide substrate scavenging ability which enables rhodococci to survive very successfully in the environment leads to the formation of biocatalysts which are suitable for the removal of low concentrations of acrylonitrile and acrylamide in waste streams and for the removal of impurities in manufacturing processes.
Two novel Fe(III)-reducing bacteria, Geothrix campi sp. nov. and Geothrix mesophila sp. nov., isolated from paddy soils
Antonie van Leeuwenhoek - Tập 117 Số 1 - 2024
Seunghee Han, Shang Yang, Rong Tang, Cheng-Jie Xie, Xing Liu, Guo-Hong Liu, Shungui Zhou
On the contribution of the acrylate pathway to the formation of propionate from lactate in the rumen of cattle
Antonie van Leeuwenhoek - Tập 42 - Trang 25-31 - 1976
R. A. Prins, P. van der Meer
The effect of chloral hydrate, an inhibitor of methanogenesis, on the participation of the acrylate pathway in the formation of propionate from lactate in rumen contents of cattle was studied in vitro. Addition of chloral hydrate resulted in only a small stimulation of the acrylate pathway, much lower than the stimulation of propionate production by chloral hydrate. This means that the flux of carbon through both the acrylate and the dicarboxylic acid pathway is increased during chloral hydrate feeding. The influence of time of sampling after feeding on the contribution of the acrylate pathway was studied in a separate experiment. A marked drop in the participation of the acrylate pathway in propionate formation from lactate during at least 2 h after feeding was observed, whereafter a rapid rise to prefeeding levels occurred.
Chitinophaga aurantiaca sp. nov., isolated from a soil sample from a tangerine field
Antonie van Leeuwenhoek - Tập 112 - Trang 1189-1197 - 2019
Su-Kyung Kim, MooChang Kook, Zheng-Fei Yan, Sang-Yong Park, Sang Suk Kim, Ho Bin Kim, Huan Trinh, Kyung Hwa Won, Jung-Eun Yang, Tae-Hoo Yi
A Gram-stain-negative, facultatively anaerobic, non-motile and rod-shaped bacterial strain, designated THG-SD5.5T, was isolated from a soil sample collected in a tangerine field, Republic of Korea. According to the 16S rRNA gene sequence comparisons, the isolate was identified as a member of the genus Chitinophaga and to be closely related to Chitinophaga ginsengihumi KACC 17604T (97.9%) and Chitinophaga rupis KACC 14521T (97.5%). The 16S rRNA gene sequence similarities with other species of the genus Chitinophaga were in the range 92.8–95.5%. Catalase test was positive. Oxidase test was negative. The DNA G + C content was determined to be 46.1 mol%. DNA-DNA hybridization values between strain THG-SD5.5T and C. ginsengihumi KACC 17604T and C. rupis KACC 14521T were 45.1% and 15.6%, respectively. Strain THG-SD5.5T was also found to be able to grow at 24–33 °C, at 0–5% NaCl and at pH 5.5–9.0. The major fatty acids were identified as anteiso-C15:0, C16:0, anteiso-C17:0 and C18:0. The dominant respiratory quinone was identified as menaquinone-7 (MK-7). The polar lipids were found to be diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, an unidentified aminolipid, two unidentified phospholipids and three unidentified lipids. Based on these phenotypic, genotypic and phylogenetic characterisations, strain THG-SD5.5T (= KACC 19338T = CGMCC 1.16304T) is concluded to represent a novel species of the genus Chitinophaga, for which the name Chitinophaga aurantiaca sp. nov. is proposed.
Electron microscopy of bacterial ribosomal subunits
Antonie van Leeuwenhoek - Tập 35 - Trang 235-235 - 1969
N. Nanninga
Streptacidiphilus gen. nov., acidophilic actinomycetes with wall chemotype I and emendation of the family Streptomycetaceae (Waksman and Henrici (1943)AL) emend. Rainey et al. 1997
Antonie van Leeuwenhoek - Tập 83 - Trang 107-116 - 2003
Seung Bum Kim, John Lonsdale, Chi-Nam Seong, Michael Goodfellow
The taxonomic position of acidophilic actinomycetes selectively isolated from acidic soils and litter was examined using a polyphasic approach. The distinct 16S rDNA phyletic branch formed by representative strains was equated with related monophyletic clades that corresponded to the genera Kitasatospora and Streptomyces. The acidophilic isolates also exhibited a distinctive pH profile, a unique 16S rDNA signature, and contained major amounts of LL-diaminopimelic acid, galactose and rhamnose in whole-organism hydrolysates. It is proposed that these acidophilic actinomycetes be assigned to a new genus, Streptacidiphilus gen. nov., on the basis of genotypic and phenotypic differences. Three species were defined on the basis of DNA:DNA pairing and phenotypic data, namely, Streptacidiphilus albus sp. nov., the type species, Streptacidiphilus neutrinimicus sp. nov. and Streptacidiphilus carbonis sp. nov. Members of the genera Kitasatospora, Streptacidiphilus and Streptomyces share a number of key characteristics and form a stable monophyletic branch in the 16S rDNA tree. It is, therefore, proposed that the description of the family Streptomycetaceae be emended to account for properties shown by Kitasatospora and Streptacidiphilus species.
Tổng số: 4,791   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 10