Annual Reviews
Công bố khoa học tiêu biểu
* Dữ liệu chỉ mang tính chất tham khảo
Water is essential for life in many ways, and without it biomolecules might no longer truly be biomolecules. In particular, water is important to the structure, stability, dynamics, and function of biological macromolecules. In protein folding, water mediates the collapse of the chain and the search for the native topology through a funneled energy landscape. Water actively participates in molecular recognition by mediating the interactions between binding partners and contributes to either enthalpic or entropic stabilization. Accordingly, water must be included in recognition and structure prediction codes to capture specificity. Thus water should not be treated as an inert environment, but rather as an integral and active component of biomolecular systems, where it has both dynamic and structural roles. Focusing on water sheds light on the physics and function of biological machinery and self-assembly and may advance our understanding of the natural design of proteins and nucleic acids.
▪ Abstract The majority of soluble and membrane-bound proteins in modern cells are symmetrical oligomeric complexes with two or more subunits. The evolutionary selection of symmetrical oligomeric complexes is driven by functional, genetic, and physicochemical needs. Large proteins are selected for specific morphological functions, such as formation of rings, containers, and filaments, and for cooperative functions, such as allosteric regulation and multivalent binding. Large proteins are also more stable against denaturation and have a reduced surface area exposed to solvent when compared with many individual, smaller proteins. Large proteins are constructed as oligomers for reasons of error control in synthesis, coding efficiency, and regulation of assembly. Symmetrical oligomers are favored because of stability and finite control of assembly. Several functions limit symmetry, such as interaction with DNA or membranes, and directional motion. Symmetry is broken or modified in many forms: quasisymmetry, in which identical subunits adopt similar but different conformations; pleomorphism, in which identical subunits form different complexes; pseudosymmetry, in which different molecules form approximately symmetrical complexes; and symmetry mismatch, in which oligomers of different symmetries interact along their respective symmetry axes. Asymmetry is also observed at several levels. Nearly all complexes show local asymmetry at the level of side chain conformation. Several complexes have reciprocating mechanisms in which the complex is asymmetric, but, over time, all subunits cycle through the same set of conformations. Global asymmetry is only rarely observed. Evolution of oligomeric complexes may favor the formation of dimers over complexes with higher cyclic symmetry, through a mechanism of prepositioned pairs of interacting residues. However, examples have been found for all of the crystallographic point groups, demonstrating that functional need can drive the evolution of any symmetry.
▪ Abstract Biochemical and genetic approaches have identified the molecular mechanisms of many genetic reactions, particularly in bacteria. Now a comparably detailed understanding is needed of how groupings of genes and related protein reactions interact to orchestrate cellular functions over the cell cycle, to implement preprogrammed cellular development, or to dynamically change a cell's processes and structures in response to environmental signals. Simulations using realistic, molecular-level models of genetic mechanisms and of signal transduction networks are needed to analyze dynamic behavior of multigene systems, to predict behavior of mutant circuits, and to identify the design principles applicable to design of genetic regulatory circuits. When the underlying design rules for regulatory circuits are understood, it will be far easier to recognize common circuit motifs, to identify functions of individual proteins in regulation, and to redesign circuits for altered functions.
▪ Abstract The substrates for the essential biological processes of transcription, replication, recombination, DNA repair, and cell division are not naked DNA; rather, they are protein-DNA complexes known as chromatin, in one or another stage of a hierarchical series of compactions. These are exciting times for students of chromatin. New studies provide incontrovertible evidence linking chromatin structure to function. Exceptional progress has been made in studies of the structure of chromatin subunits. Surprising new dynamic properties have been discovered. And, much progress has been made in dissecting the functional roles of specific chromatin proteins and domains. This review focuses on in vitro studies of chromatin structure, dynamics, and function.
Synthetic circuits offer great promise for generating insights into nature's underlying design principles or forward engineering novel biotechnology applications. However, construction of these circuits is not straightforward. Synthetic circuits generally consist of components optimized to function in their natural context, not in the context of the synthetic circuit. Combining mathematical modeling with directed evolution offers one promising means for addressing this problem. Modeling identifies mutational targets and limits the evolutionary search space for directed evolution, which alters circuit performance without the need for detailed biophysical information. This review examines strategies for integrating modeling and directed evolution and discusses the utility and limitations of available methods.
An X-ray structure of the lactose permease of Escherichia coli (LacY) in an inward-facing conformation has been solved. LacY contains N- and C-terminal domains, each with six transmembrane helices, positioned pseudosymmetrically. Ligand is bound at the apex of a hydrophilic cavity in the approximate middle of the molecule. Residues involved in substrate binding and H+ translocation are aligned parallel to the membrane at the same level and may be exposed to a water-filled cavity in both the inward- and outward-facing conformations, thereby allowing both sugar and H+ release directly into either cavity. These structural features may explain why LacY catalyzes galactoside/H+ symport in both directions utilizing the same residues. A working model for the mechanism is presented that involves alternating access of both the sugar- and H+-binding sites to either side of the membrane.
Splicing is an essential step of gene expression in which introns are removed from pre-mRNA to generate mature mRNA that can be translated by the ribosome. This reaction is catalyzed by a large and dynamic macromolecular RNP complex called the spliceosome. The spliceosome is formed by the stepwise integration of five snRNPs composed of U1, U2, U4, U5, and U6 snRNAs and more than 150 proteins binding sequentially to pre-mRNA. To study the structure of this particularly dynamic RNP machine that undergoes many changes in composition and conformation, single-particle cryo-electron microscopy (cryo-EM) is currently the method of choice. In this review, we present the results of these cryo-EM studies along with some new perspectives on structural and functional aspects of splicing, and we outline the perspectives and limitations of the cryo-EM technique in obtaining structural information about macromolecular complexes, such as the spliceosome, involved in splicing.
- 1
- 2
- 3
- 4