Bilayer Thickness and Membrane Protein Function: An Energetic Perspective

Annual Reviews - Tập 36 Số 1 - Trang 107-130 - 2007
Olaf S. Andersen1, Roger E. Koeppe2
1Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, New York 10021, USA
2Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, 72701

Tóm tắt

The lipid bilayer component of biological membranes is important for the distribution, organization, and function of bilayer-spanning proteins. This regulation is due to both specific lipid-protein interactions and general bilayer-protein interactions, which modulate the energetics and kinetics of protein conformational transitions, as well as the protein distribution between different membrane compartments. The bilayer regulation of membrane protein function arises from the hydrophobic coupling between the protein's hydrophobic domains and the bilayer hydrophobic core, which causes protein conformational changes that involve the protein/bilayer boundary to perturb the adjacent bilayer. Such bilayer perturbations, or deformations, incur an energetic cost, which for a given conformational change varies as a function of the bilayer material properties (bilayer thickness, intrinsic lipid curvature, and the elastic compression and bending moduli). Protein function therefore is regulated by changes in bilayer material properties, which determine the free-energy changes caused by the protein-induced bilayer deformation. The lipid bilayer thus becomes an allosteric regulator of membrane function.

Từ khóa


Tài liệu tham khảo

10.1016/j.jmb.2004.07.041

10.1021/ja029317k

10.1016/S0076-6879(89)71007-7

Andersen OS, Artigas P, Lundbæk JA, Nielsen C. 2007. Lipid bilayer control of integral membrane protein function: analysis of a mechanism. Biophys. J. 92:1172 (Abstr.)

Andersen OS, Bruno MJ, Sun H, Koeppe RE II. 2007. Single-molecule methods for monitoring changes in bilayer elastic properties. Methods Membr. Lipids. In press

10.1109/TNB.2004.842470

Andersen OS, 1998, Biol. Skr. Dan. Vid. Selsk., 49, 75

Arseniev AS, 1986, Biol. Membr., 3, 437

10.1016/S1359-0294(00)00061-3

10.1016/S0070-2161(08)60986-7

10.1016/0009-3084(94)90180-5

10.1073/pnas.94.6.2339

10.1021/bi00510a034

10.1021/bi9627323

10.1021/bi00321a096

10.1007/BF00233303

Chen C, 1984, J. Biol. Chem., 259, 10150, 10.1016/S0021-9258(18)90942-7

Criado M, 1984, J. Biol. Chem., 259, 9188, 10.1016/S0021-9258(17)47283-8

10.1016/0304-4157(79)90012-1

Daily AE, Greathouse DV, van der Wel PCA, Koeppe RE II. 2007. Intrinsic kinking of transmembrane α-helical peptides as a function of hydrophobic mismatch. Biophys. J. 92:326 (Abstr.)

10.1016/S0006-3495(98)74059-7

10.1021/bi000804r

10.1021/bi980233r

10.1074/jbc.274.30.20839

10.1146/annurev.biochem.66.1.199

10.1016/j.bbamem.2004.04.010

10.1021/bi992634s

10.1016/S0006-3495(92)81801-5

10.1016/0005-2736(83)90264-X

Evans E, 1995, Bile Acids in Gastroenterology: Basic and Clinical Advances, 59

10.1016/S0070-2161(08)60833-3

10.1016/S0006-3495(93)81249-9

10.1146/annurev.biophys.36.040306.132721

10.1085/jgp.68.2.127

10.1021/bi9828324

10.1021/j100484a006

10.1016/S0006-3495(98)77790-2

10.1021/bi00180a025

10.1073/pnas.82.11.3665

10.1016/S0006-3495(99)77257-7

10.1016/S0006-3495(90)82625-4

Helfrich W, 1981, Physics of Defects, 716

10.1080/09687680307082

10.1073/pnas.0400358101

10.1016/S0006-3495(86)83550-0

10.1016/0005-2736(91)90231-V

10.1016/0005-2736(77)90185-7

10.1111/j.1432-1033.1985.tb09264.x

10.1016/j.bbamem.2004.06.009

10.1016/0005-2736(81)90498-3

10.1016/S0065-3233(08)60608-7

10.1016/S0006-3495(93)81040-3

10.1016/S0969-2126(97)00312-2

10.1016/0304-4157(92)90008-X

10.1016/S0304-4157(98)00017-3

10.1016/j.sbi.2006.06.007

10.1021/bi9519258

10.1016/S0968-0004(00)01626-1

10.1529/biophysj.104.048223

10.1016/0163-7827(91)90002-M

10.1016/S0005-2736(03)00056-7

10.1016/j.bbamem.2004.05.012

10.1016/S0006-3495(00)76304-1

10.1021/bi00634a030

10.1038/nsb1001-883

10.1088/0953-8984/18/28/S13

10.1016/S0006-3495(99)77252-8

10.1016/S0006-3495(03)75015-2

10.1085/jgp.200308996

10.1124/mol.105.013573

10.1021/bi9619841

10.1529/biophysj.103.034280

10.1021/bi00277a036

10.3109/10408418909105720

10.1146/annurev.biophys.35.040405.102022

10.1021/bi00488a015

10.1021/bi00491a007

10.1016/S0014-5793(97)00709-6

10.1021/bi0509649

10.1016/0014-5793(82)80588-7

10.1016/S0006-3495(84)84007-2

10.1007/BF02535147

10.1016/S0304-4157(00)00016-2

10.1021/bi00296a021

Needham D, 1995, Permeability and Stability of Lipid Bilayers, 49

10.1016/S0006-3495(92)81926-4

10.1016/S0006-3495(00)76498-8

Nielsen C, 2001, Biophys. J., 80, 545e

10.1016/S0006-3495(98)77904-4

10.1126/science.1700867

10.1016/S0006-3495(00)76454-X

10.1085/jgp.200208746

10.1063/1.1519840

10.1038/nature00992

10.1038/nsb827

10.1021/bi0156557

10.1021/bi0103258

10.1021/bi047338g

10.1016/S0070-2161(08)60208-7

10.1016/S0006-3495(00)76295-3

10.1074/jbc.M602548200

Sackmann E, 1984, Biological Membranes, 5, 105

10.1021/bi980733k

10.1016/0304-4157(78)90015-1

10.1016/0304-4157(90)90002-T

10.1073/pnas.71.11.4457

10.1529/biophysj.105.070466

10.1126/science.175.4023.720

Spector AA, 1985, J. Lipid Res., 26, 1015, 10.1016/S0022-2275(20)34276-0

10.1042/bj3180785

10.1021/bi012047i

10.1529/biophysj.103.035402

10.1006/abbi.1994.1535

10.1021/bi010942w

10.1038/nature00944

Uratani Y, 1987, J. Biol. Chem., 262, 16914, 10.1016/S0021-9258(18)45470-1

10.1074/jbc.275.4.2472

10.1016/S0006-3495(02)73918-0

10.1007/BF01870127

10.1016/S0006-3495(03)74858-9

10.1038/nrd1776

Wiener MC, 1992, Biophys. J., 61, 437

10.1016/S0006-3495(02)73964-7

10.1074/jbc.M602565200

10.1016/0009-3084(96)82215-8

10.1016/0300-9084(91)90093-G

10.1529/biophysj.103.029678

10.1529/biophysj.104.054510