Chaperonin-Mediated Protein Folding

Annual Reviews - Tập 30 Số 1 - Trang 245-269 - 2001
D. Thirumalai1, George H. Lorimer1
1Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, Collge Park, Maryland 20742;

Tóm tắt

▪ Abstract  Molecular chaperones are required to assist folding of a subset of proteins in Escherichia coli. We describe a conceptual framework for understanding how the GroEL-GroES system assists misfolded proteins to reach their native states. The architecture of GroEL consists of double toroids stacked back-to-back. However, most of the fundamentals of the GroEL action can be described in terms of the single ring. A key idea in our framework is that, with coordinated ATP hydrolysis and GroES binding, GroEL participates actively by repeatedly unfolding the substrate protein (SP), provided that it is trapped in one of the misfolded states. We conjecture that the unfolding of SP becomes possible because a stretching force is transmitted to the SP when the GroEL particle undergoes allosteric transitions. Force-induced unfolding of the SP puts it on a higher free-energy point in the multidimensional energy landscape from which the SP can either reach the native conformation with some probability or be trapped in one of the competing basins of attraction (i.e., the SP undergoes kinetic partitioning). The model shows, in a natural way, that the time scales in the dynamics of the allosteric transitions are intimately coupled to folding rates of the SP. Several scenarios for chaperonin-assisted folding emerge depending on the interplay of the time scales governing the cycle. Further refinement of this framework may be necessary because single molecule experiments indicate that there is a great dispersion in the time scales governing the dynamics of the chaperonin cycle.

Từ khóa


Tài liệu tham khảo

10.1074/jbc.275.18.13755

10.1074/jbc.272.51.32158

10.1006/jmbi.1999.2591

10.1038/371578a0

10.1002/(SICI)1097-0134(199603)24:3<345::AID-PROT7>3.0.CO;2-F

10.1006/jmbi.1999.3040

10.1016/S0092-8674(00)81673-6

10.1006/jmbi.1998.2403

10.1006/jmbi.1999.3138

10.1073/pnas.93.9.4509

10.1038/nsb0197-10

10.1021/ar9700825

10.1016/S0092-8674(00)80509-7

10.1016/S0092-8674(00)80692-3

10.1007/BF00333274

10.1006/jmbi.1997.1007

10.1002/pro.5560060401

10.1038/371614a0

10.1016/S0959-440X(97)80002-4

Fisher MT, 1994, J. Biol. Chem., 269, 13629, 10.1016/S0021-9258(17)36876-X

Fisher TE, 2000, Nat. Struct. Biol., 9, 719

Gordon CL, 1994, J. Biol. Chem., 269, 27941, 10.1016/S0021-9258(18)46878-0

10.1074/jbc.M002243200

10.1006/jmbi.1993.1471

10.1073/pnas.91.20.9292

10.1002/bip.360360108

10.1006/bulm.1999.0150

10.1038/45977

10.1021/bi9714870

10.1021/bi00044a037

10.1006/jmbi.1996.0666

10.1021/bi00865a047

10.1074/jbc.270.3.1011

10.1096/fasebj.10.1.8566548

10.1038/41892

10.1073/pnas.95.15.8502

10.1006/jmbi.2000.4014

10.1016/S0022-2836(65)80285-6

10.1038/36626

10.1006/jmbi.1997.1192

10.1023/A:1011541917701

Nielsen KL, 1999, J. Bacteriol., 181, 5871, 10.1128/JB.181.18.5871-5875.1999

10.1146/annurev.physchem.48.1.545

10.1051/jp1:1997174

10.1006/bbrc.1999.1864

10.1006/jmbi.1997.1081

10.1016/S0968-0004(98)01193-1

Richarme G, 1994, J. Biol. Chem., 269, 7095, 10.1016/S0021-9258(17)37251-4

10.1038/42047

10.1016/S0092-8674(00)80742-4

10.1016/S0959-440X(00)00074-9

10.1074/jbc.274.30.21251

10.1038/nsb0598-385

10.1126/science.284.5415.822

10.1146/annurev.biochem.67.1.581

10.1007/978-1-4899-1349-4_12

10.1051/jp1:1995209

Thirumalai D, 1997, Theor. Chem. Acc., 1, 23

10.1073/pnas.93.9.4030

10.1126/science.7913555

10.1038/342451a0

10.1038/77936

10.1002/pro.5560010308

10.1016/S0006-3495(98)78032-4

10.1073/pnas.93.18.9425

10.1016/0092-8674(94)90533-9

10.1016/S0092-8674(00)81293-3

10.1038/nsb0997-690

10.1021/bi991765q

10.1038/41944

10.1006/jsbi.1998.4060

10.1006/jmbi.1996.0028

10.1021/bi00016a001

10.1021/bi980370o

10.1073/pnas.040449997

10.1126/science.271.5249.642