ACM Transactions on Graphics
Công bố khoa học tiêu biểu
* Dữ liệu chỉ mang tính chất tham khảo
In this paper, we introduce a novel system for browsing, enhancing, and manipulating casual outdoor photographs by combining them with already existing georeferenced digital terrain and urban models. A simple interactive registration process is used to align a photograph with such a model. Once the photograph and the model have been registered, an abundance of information, such as depth, texture, and GIS data, becomes immediately available to our system. This information, in turn, enables a variety of operations, ranging from dehazing and relighting the photograph, to novel view synthesis, and overlaying with geographic information. We describe the implementation of a number of these applications and discuss possible extensions. Our results show that augmenting photographs with already available 3D models of the world supports a wide variety of new ways for us to experience and interact with our everyday snapshots.
Photographs of hazy scenes typically suffer having low contrast and offer a limited visibility of the scene. This article describes a new method for single-image dehazing that relies on a generic regularity in natural images where pixels of small image patches typically exhibit a 1D distribution in RGB color space, known as color-lines. We derive a local formation model that explains the color-lines in the context of hazy scenes and use it for recovering the scene transmission based on the lines' offset from the origin. The lack of a dominant color-line inside a patch or its lack of consistency with the formation model allows us to identify and avoid false predictions. Thus, unlike existing approaches that follow their assumptions across the entire image, our algorithm validates its hypotheses and obtains more reliable estimates where possible.
In addition, we describe a Markov random field model dedicated to producing complete and regularized transmission maps given noisy and scattered estimates. Unlike traditional field models that consist of local coupling, the new model is augmented with long-range connections between pixels of similar attributes. These connections allow our algorithm to properly resolve the transmission in isolated regions where nearby pixels do not offer relevant information.
An extensive evaluation of our method over different types of images and its comparison to state-of-the-art methods over established benchmark images show a consistent improvement in the accuracy of the estimated scene transmission and recovered haze-free radiances.
To look human, digital full-body avatars need to have soft-tissue deformations like those of real people. We learn a model of soft-tissue deformations from examples using a high-resolution 4D capture system and a method that accurately registers a template mesh to sequences of 3D scans. Using over 40,000 scans of ten subjects, we learn how soft-tissue motion causes mesh triangles to deform relative to a base 3D body model. Our
Computing a curve to approximate data points is a problem encountered frequently in many applications in computer graphics, computer vision, CAD/CAM, and image processing. We present a novel and efficient method, called
We present a new image editing method, particularly effective for sharpening major edges by increasing the steepness of transition while eliminating a manageable degree of low-amplitude structures. The seemingly contradictive effect is achieved in an optimization framework making use of
We provide an image deformation method based on Moving Least Squares using various classes of linear functions including affine, similarity and rigid transformations. These deformations are realistic and give the user the impression of manipulating real-world objects. We also allow the user to specify the deformations using either sets of points or line segments, the later useful for controlling curves and profiles present in the image. For each of these techniques, we provide simple closed-form solutions that yield fast deformations, which can be performed in real-time.
This paper introduces a new kind of mosaic, called Jigsaw Image Mosaic (JIM), where image tiles of arbitrary shape are used to compose the final picture. The generation of a Jigsaw Image Mosaic is a solution to the following problem: given an arbitrarily-shaped container image and a set of arbitrarily-shaped image tiles, fill the container as compactly as possible with tiles of similar color to the container taken from the input set while optionally deforming them slightly to achieve a more visually-pleasing effect. We approach the problem by defining a mosaic as the tile configuration that minimizes a mosaicing energy function. We introduce a general energy-based framework for mosaicing problems that extends some of the existing algorithms such as Photomosaics and Simulated Decorative Mosaics. We also present a fast algorithm to solve the mosaicing problem at an acceptable computational cost. We demonstrate the use of our method by applying it to a wide range of container images and tiles.
Harmonic colors are sets of colors that are aesthetically pleasing in terms of human visual perception. In this paper, we present a method that enhances the harmony among the colors of a given photograph or of a general image, while remaining faithful, as much as possible, to the original colors. Given a color image, our method finds the best harmonic scheme for the image colors. It then allows a graceful shifting of hue values so as to fit the harmonic scheme while considering spatial coherence among colors of neighboring pixels using an optimization technique. The results demonstrate that our method is capable of automatically enhancing the color "look-and-feel" of an ordinary image. In particular, we show the results of harmonizing the background image to accommodate the colors of a foreground image, or the foreground with respect to the background, in a cut-and-paste setting. Our color harmonization technique proves to be useful in adjusting the colors of an image composed of several parts taken from different sources.
The paradigm of simulated annealing is applied to the problem of drawing graphs “nicely.” Our algorithm deals with general undirected graphs with straight-line edges, and employs several simple criteria for the aesthetic quality of the result. The algorithm is flexible, in that the relative weights of the criteria can be changed. For graphs of modest size it produces good results, competitive with those produced by other methods, notably, the “spring method” and its variants.
Acquiring 3D geometry of an object is a tedious and time-consuming task, typically requiring scanning the surface from multiple viewpoints. In this work we focus on reconstructing complete geometry from a single scan acquired with a low-quality consumer-level scanning device. Our method uses a collection of example 3D shapes to build structural part-based priors that are necessary to complete the shape. In our representation, we associate a local coordinate system to each part and learn the distribution of positions and orientations of all the other parts from the database, which implicitly also defines positions of symmetry planes and symmetry axes. At the inference stage, this knowledge enables us to analyze incomplete point clouds with substantial occlusions, because observing only a few regions is still sufficient to infer the global structure. Once the parts and the symmetries are estimated, both data sources, symmetry and database, are fused to complete the point cloud. We evaluate our technique on a synthetic dataset containing 481 shapes, and on real scans acquired with a Kinect scanner. Our method demonstrates high accuracy for the estimated part structure and detected symmetries, enabling higher quality shape completions in comparison to alternative techniques.
- 1
- 2
- 3
- 4
- 5