Schelling points on 3D surface meshes

ACM Transactions on Graphics - Tập 31 Số 4 - Trang 1-12 - 2012
Xiaobai Chen1, Abulhair Saparov1, Bill Pang1, Thomas Funkhouser1
1Princeton University

Tóm tắt

This paper investigates "Schelling points" on 3D meshes, feature points selected by people in a pure coordination game due to their salience. To collect data for this investigation, we designed an online experiment that asked people to select points on 3D surfaces that they expect will be selected by other people. We then analyzed properties of the selected points, finding that: 1) Schelling point sets are usually highly symmetric, and 2) local curvature properties (e.g., Gauss curvature) are most helpful for identifying obvious Schelling points (tips of protrusions), but 3) global properties (e.g., segment centeredness, proximity to a symmetry axis, etc.) are required to explain more subtle features. Based on these observations, we use regression analysis to combine multiple properties into an analytical model that predicts where Schelling points are likely to be on new meshes. We find that this model benefits from a variety of surface properties, particularly when training data comes from examples in the same object class.

Từ khóa


Tài liệu tham khảo

10.1007/PL00007211

Amazon 2009. Mechanical turk. http://www.mturk.com. Amazon 2009. Mechanical turk. http://www.mturk.com.

10.1037/h0054663

10.1023/A:1010933404324

Bronstein A. Bronstein M. and Kimmel R. 2006. Generalized multidimensional scaling: A framework for isometry-invariant partial surface matching. Proceedings of the National Academy of Science 1168--1172. Bronstein A. Bronstein M. and Kimmel R. 2006. Generalized multidimensional scaling: A framework for isometry-invariant partial surface matching. Proceedings of the National Academy of Science 1168--1172.

10.5555/2381170.2381184

10.1111/j.1467-8659.2008.01162.x

10.1145/1531326.1531379

10.1023/A:1007981719186

10.1145/1360612.1360687

10.1145/1531326.1531334

Funkhouser T., Symposium on Geometry Processing.

10.1145/1122501.1122507

10.1145/258734.258849

Giorgi D. Biasotti S. and Paraboschi L. 2007. SHREC:SHape REtrieval Contest: Watertight models track http://watertight.ge.imati.cnr.it/. Giorgi D. Biasotti S. and Paraboschi L. 2007. SHREC:SHape REtrieval Contest: Watertight models track http://watertight.ge.imati.cnr.it/.

10.1145/1753326.1753357

10.1111/1467-8659.00627

Hoffman D. D. and Singh M. 1997. Salience of visual parts. vol. 63. Hoffman D. D. and Singh M. 1997. Salience of visual parts. vol. 63.

Huang T. Cheng K. and Chuang Y. 2009. A collaborative benchmark for region of interest detection algorithms. 296--303. Huang T. Cheng K. and Chuang Y. 2009. A collaborative benchmark for region of interest detection algorithms. 296--303.

10.1109/34.730558

10.1109/CVPR.2000.854868

10.1145/1778765.1778839

Katz S. Leifman G. and Tal A. 2005. Mesh segmentation using feature point and core extraction. Visual Computer (September). Katz S. Leifman G. and Tal A. 2005. Mesh segmentation using feature point and core extraction. Visual Computer (September).

10.1145/1670671.1670676

10.1145/2010324.1964974

10.1364/JOSAA.23.002462

Koch C., 1985, Shifts in selective visual attention: towards the underlying neural circuitry, Human Neurobiology, 4, 219

10.1145/1015706.1015811

10.1145/1073204.1073244

Lewis D., 1969, Convention: A Philosophical Study

Li X., Symposium on Geometry Processing.

Li X., Workshop on 3D Representation for Recognition (3dRR).

10.1145/1531326.1531378

Milanes R. Wechsler H. Gil S. Bost J. and Pun T. 1994. Integration of bottom-up and top-down cues for visual attention using non-linear relaxation. IEEE Computer Vision and Pattern Recognition 781--785. Milanes R. Wechsler H. Gil S. Bost J. and Pun T. 1994. Integration of bottom-up and top-down cues for visual attention using non-linear relaxation. IEEE Computer Vision and Pattern Recognition 781--785.

10.1007/s11263-006-9967-1

Novotni M., 2005, Tech. Rep. CG-2005-2, Universität Bonn, June.

Parker P. 2011. Webster's On-line Dictionary: The Rosetta Edition. http://www.websters-online-dictionary.org. Parker P. 2011. Webster's On-line Dictionary: The Rosetta Edition . http://www.websters-online-dictionary.org.

10.1109/34.877520

10.1016/S0042-6989(99)00077-2

10.5555/1018408.1018660

10.1145/968363.968368

Schelling T. 1960. The Strategy of Conflict. Harvard University Press. Schelling T. 1960. The Strategy of Conflict . Harvard University Press.

Schlattmann M., 2008, Scale space based feature point detection on surfaces, Journal of WSCG, 16

10.1023/A:1008199403446

10.1016/S0167-8655(02)00192-7

10.1007/s00371-007-0197-5

10.1145/1243980.1243981

Simpson J. 1989. Oxford English Dictionary Second Edition. Oxford University Press. http://dictionary.oed.com. Simpson J. 1989. Oxford English Dictionary Second Edition . Oxford University Press. http://dictionary.oed.com.

10.1145/267734.267805

Stark M. and Schiele B. 2007. How good are local features for classes of geometric objects. 1--8. Stark M. and Schiele B. 2007. How good are local features for classes of geometric objects. 1--8.

10.1145/1015706.1015736

Sun J., Computer Graphics Forum, 28

10.1016/0004-3702(95)00025-9

van Kaick O., Proc. of Eurographics State-of-the-art Report.

10.1145/1378704.1378719

Witten I. H. and Frank E. 2005. Data mining: Practical machine learning tools and techniques 2nd edition. Witten I. H. and Frank E. 2005. Data mining: Practical machine learning tools and techniques 2nd edition.

10.1145/1618452.1618484

Zaharescu A. Boyer E. Varanasi K. and Horaud R. 2009. Surface feature detection and description with applications to mesh matching. In CVPR. Zaharescu A. Boyer E. Varanasi K. and Horaud R. 2009. Surface feature detection and description with applications to mesh matching. In CVPR .

10.1145/1037957.1037958

10.5555/1731309.1731327

Zhou Y. and Huang Z. 2004. Decomposing polygon meshes by means of critical points. In MMM 187--195. Zhou Y. and Huang Z. 2004. Decomposing polygon meshes by means of critical points. In MMM 187--195.

Zuliani M., Computer Vision and Pattern Recognition Workshop, 172