ACM Transactions on Graphics

  1557-7368

  0730-0301

  Mỹ

Cơ quản chủ quản:  Association for Computing Machinery (ACM) , ASSOC COMPUTING MACHINERY

Lĩnh vực:
Computer Graphics and Computer-Aided Design

Các bài báo tiêu biểu

"GrabCut"
Tập 23 Số 3 - Trang 309-314 - 2004
Carsten Rother, Vladimir Kolmogorov, Andrew Blake

The problem of efficient, interactive foreground/background segmentation in still images is of great practical importance in image editing. Classical image segmentation tools use either texture (colour) information, e.g. Magic Wand, or edge (contrast) information, e.g. Intelligent Scissors. Recently, an approach based on optimization by graph-cut has been developed which successfully combines both types of information. In this paper we extend the graph-cut approach in three respects. First, we have developed a more powerful, iterative version of the optimisation. Secondly, the power of the iterative algorithm is used to simplify substantially the user interaction needed for a given quality of result. Thirdly, a robust algorithm for "border matting" has been developed to estimate simultaneously the alpha-matte around an object boundary and the colours of foreground pixels. We show that for moderately difficult examples the proposed method outperforms competitive tools.

Photo tourism
Tập 25 Số 3 - Trang 835-846 - 2006
Noah Snavely, Steven M. Seitz, Richard Szeliski

We present a system for interactively browsing and exploring large unstructured collections of photographs of a scene using a novel 3D interface. Our system consists of an image-based modeling front end that automatically computes the viewpoint of each photograph as well as a sparse 3D model of the scene and image to model correspondences. Our photo explorer uses image-based rendering techniques to smoothly transition between photographs, while also enabling full 3D navigation and exploration of the set of images and world geometry, along with auxiliary information such as overhead maps. Our system also makes it easy to construct photo tours of scenic or historic locations, and to annotate image details, which are automatically transferred to other relevant images. We demonstrate our system on several large personal photo collections as well as images gathered from Internet photo sharing sites.

Screened poisson surface reconstruction
Tập 32 Số 3 - Trang 1-13 - 2013
Michael Kazhdan, Hugues Hoppe

Poisson surface reconstruction creates watertight surfaces from oriented point sets. In this work we extend the technique to explicitly incorporate the points as interpolation constraints. The extension can be interpreted as a generalization of the underlying mathematical framework to a screened Poisson equation. In contrast to other image and geometry processing techniques, the screening term is defined over a sparse set of points rather than over the full domain. We show that these sparse constraints can nonetheless be integrated efficiently. Because the modified linear system retains the same finite-element discretization, the sparsity structure is unchanged, and the system can still be solved using a multigrid approach. Moreover we present several algorithmic improvements that together reduce the time complexity of the solver to linear in the number of points, thereby enabling faster, higher-quality surface reconstructions.

Edge-preserving decompositions for multi-scale tone and detail manipulation
Tập 27 Số 3 - Trang 1-10 - 2008
Zeev Farbman, Raanan Fattal, Dani Lischinski, Richard Szeliski

Many recent computational photography techniques decompose an image into a piecewise smooth base layer, containing large scale variations in intensity, and a residual detail layer capturing the smaller scale details in the image. In many of these applications, it is important to control the spatial scale of the extracted details, and it is often desirable to manipulate details at multiple scales, while avoiding visual artifacts.

In this paper we introduce a new way to construct edge-preserving multi-scale image decompositions. We show that current basedetail decomposition techniques, based on the bilateral filter, are limited in their ability to extract detail at arbitrary scales. Instead, we advocate the use of an alternative edge-preserving smoothing operator, based on the weighted least squares optimization framework, which is particularly well suited for progressive coarsening of images and for multi-scale detail extraction. After describing this operator, we show how to use it to construct edge-preserving multi-scale decompositions, and compare it to the bilateral filter, as well as to other schemes. Finally, we demonstrate the effectiveness of our edge-preserving decompositions in the context of LDR and HDR tone mapping, detail enhancement, and other applications.

Seam carving for content-aware image resizing
Tập 26 Số 3 - Trang 10 - 2007
Shai Avidan, Ariel Shamir

Effective resizing of images should not only use geometric constraints, but consider the image content as well. We present a simple image operator called seam carving that supports content-aware image resizing for both reduction and expansion. A seam is an optimal 8-connected path of pixels on a single image from top to bottom, or left to right, where optimality is defined by an image energy function. By repeatedly carving out or inserting seams in one direction we can change the aspect ratio of an image. By applying these operators in both directions we can retarget the image to a new size. The selection and order of seams protect the content of the image, as defined by the energy function. Seam carving can also be used for image content enhancement and object removal. We support various visual saliency measures for defining the energy of an image, and can also include user input to guide the process. By storing the order of seams in an image we create multi-size images, that are able to continuously change in real time to fit a given size.

Fast bilateral filtering for the display of high-dynamic-range images
Tập 21 Số 3 - Trang 257-266 - 2002
Frédo Durand, Julie Dorsey

We present a new technique for the display of high-dynamic-range images, which reduces the contrast while preserving detail. It is based on a two-scale decomposition of the image into a base layer, encoding large-scale variations, and a detail layer. Only the base layer has its contrast reduced, thereby preserving detail. The base layer is obtained using an edge-preserving filter called the bilateral filter. This is a non-linear filter, where the weight of each pixel is computed using a Gaussian in the spatial domain multiplied by an influence function in the intensity domain that decreases the weight of pixels with large intensity differences. We express bilateral filtering in the framework of robust statistics and show how it relates to anisotropic diffusion. We then accelerate bilateral filtering by using a piecewise-linear approximation in the intensity domain and appropriate subsampling. This results in a speed-up of two orders of magnitude. The method is fast and requires no parameter setting.

Shape google
Tập 30 Số 1 - Trang 1-20 - 2011
Alexander M. Bronstein, Michael M. Bronstein, Leonidas J. Guibas, Maks Ovsjanikov

The computer vision and pattern recognition communities have recently witnessed a surge of feature-based methods in object recognition and image retrieval applications. These methods allow representing images as collections of “visual words” and treat them using text search approaches following the “bag of features” paradigm. In this article, we explore analogous approaches in the 3D world applied to the problem of nonrigid shape retrieval in large databases. Using multiscale diffusion heat kernels as “geometric words,” we construct compact and informative shape descriptors by means of the “bag of features” approach. We also show that considering pairs of “geometric words” (“geometric expressions”) allows creating spatially sensitive bags of features with better discriminative power. Finally, adopting metric learning approaches, we show that shapes can be efficiently represented as binary codes. Our approach achieves state-of-the-art results on the SHREC 2010 large-scale shape retrieval benchmark.

O-CNN
Tập 36 Số 4 - Trang 1-11 - 2017
Peng‐Shuai Wang, Yang Liu, Yuxiao Guo, Chunyu Sun, Xin Tong

We present O-CNN , an Octree-based Convolutional Neural Network (CNN) for 3D shape analysis. Built upon the octree representation of 3D shapes, our method takes the average normal vectors of a 3D model sampled in the finest leaf octants as input and performs 3D CNN operations on the octants occupied by the 3D shape surface. We design a novel octree data structure to efficiently store the octant information and CNN features into the graphics memory and execute the entire O-CNN training and evaluation on the GPU. O-CNN supports various CNN structures and works for 3D shapes in different representations. By restraining the computations on the octants occupied by 3D surfaces, the memory and computational costs of the O-CNN grow quadratically as the depth of the octree increases, which makes the 3D CNN feasible for high-resolution 3D models. We compare the performance of the O-CNN with other existing 3D CNN solutions and demonstrate the efficiency and efficacy of O-CNN in three shape analysis tasks, including object classification, shape retrieval, and shape segmentation.

Image smoothing via L 0 gradient minimization
Tập 30 Số 6 - Trang 1-12 - 2011
Xu Li, Cewu Lu, Yi Xu, Jiaya Jia

We present a new image editing method, particularly effective for sharpening major edges by increasing the steepness of transition while eliminating a manageable degree of low-amplitude structures. The seemingly contradictive effect is achieved in an optimization framework making use of L 0 gradient minimization, which can globally control how many non-zero gradients are resulted in to approximate prominent structure in a sparsity-control manner. Unlike other edge-preserving smoothing approaches, our method does not depend on local features, but instead globally locates important edges. It, as a fundamental tool, finds many applications and is particularly beneficial to edge extraction, clip-art JPEG artifact removal, and non-photorealistic effect generation.

Image deformation using moving least squares
Tập 25 Số 3 - Trang 533-540 - 2006
Scott Schaefer, Travis McPhail, Joe Warren

We provide an image deformation method based on Moving Least Squares using various classes of linear functions including affine, similarity and rigid transformations. These deformations are realistic and give the user the impression of manipulating real-world objects. We also allow the user to specify the deformations using either sets of points or line segments, the later useful for controlling curves and profiles present in the image. For each of these techniques, we provide simple closed-form solutions that yield fast deformations, which can be performed in real-time.