
ACM Transactions on Graphics
SCIE-ISI SCOPUS (1982-2023)
1557-7368
0730-0301
Mỹ
Cơ quản chủ quản: Association for Computing Machinery (ACM) , ASSOC COMPUTING MACHINERY
Các bài báo tiêu biểu
The problem of efficient, interactive foreground/background segmentation in still images is of great practical importance in image editing. Classical image segmentation tools use either texture (colour) information, e.g. Magic Wand, or edge (contrast) information, e.g. Intelligent Scissors. Recently, an approach based on optimization by graph-cut has been developed which successfully combines both types of information. In this paper we extend the graph-cut approach in three respects. First, we have developed a more powerful, iterative version of the optimisation. Secondly, the power of the iterative algorithm is used to simplify substantially the user interaction needed for a given quality of result. Thirdly, a robust algorithm for "border matting" has been developed to estimate simultaneously the alpha-matte around an object boundary and the colours of foreground pixels. We show that for moderately difficult examples the proposed method outperforms competitive tools.
We present a system for interactively browsing and exploring large unstructured collections of photographs of a scene using a novel 3D interface. Our system consists of an image-based modeling front end that automatically computes the viewpoint of each photograph as well as a sparse 3D model of the scene and image to model correspondences. Our
Poisson surface reconstruction creates watertight surfaces from oriented point sets. In this work we extend the technique to explicitly incorporate the points as interpolation constraints. The extension can be interpreted as a generalization of the underlying mathematical framework to a screened Poisson equation. In contrast to other image and geometry processing techniques, the screening term is defined over a sparse set of points rather than over the full domain. We show that these sparse constraints can nonetheless be integrated efficiently. Because the modified linear system retains the same finite-element discretization, the sparsity structure is unchanged, and the system can still be solved using a multigrid approach. Moreover we present several algorithmic improvements that together reduce the time complexity of the solver to linear in the number of points, thereby enabling faster, higher-quality surface reconstructions.
Many recent computational photography techniques decompose an image into a piecewise smooth base layer, containing large scale variations in intensity, and a residual detail layer capturing the smaller scale details in the image. In many of these applications, it is important to control the spatial scale of the extracted details, and it is often desirable to manipulate details at multiple scales, while avoiding visual artifacts.
In this paper we introduce a new way to construct edge-preserving multi-scale image decompositions. We show that current basedetail decomposition techniques, based on the bilateral filter, are limited in their ability to extract detail at arbitrary scales. Instead, we advocate the use of an alternative edge-preserving smoothing operator, based on the weighted least squares optimization framework, which is particularly well suited for progressive coarsening of images and for multi-scale detail extraction. After describing this operator, we show how to use it to construct edge-preserving multi-scale decompositions, and compare it to the bilateral filter, as well as to other schemes. Finally, we demonstrate the effectiveness of our edge-preserving decompositions in the context of LDR and HDR tone mapping, detail enhancement, and other applications.
Effective resizing of images should not only use geometric constraints, but consider the image content as well. We present a simple image operator called
We present a new technique for the display of high-dynamic-range images, which reduces the contrast while preserving detail. It is based on a two-scale decomposition of the image into a base layer, encoding large-scale variations, and a detail layer. Only the base layer has its contrast reduced, thereby preserving detail. The base layer is obtained using an edge-preserving filter called the
Photographs of hazy scenes typically suffer having low contrast and offer a limited visibility of the scene. This article describes a new method for single-image dehazing that relies on a generic regularity in natural images where pixels of small image patches typically exhibit a 1D distribution in RGB color space, known as color-lines. We derive a local formation model that explains the color-lines in the context of hazy scenes and use it for recovering the scene transmission based on the lines' offset from the origin. The lack of a dominant color-line inside a patch or its lack of consistency with the formation model allows us to identify and avoid false predictions. Thus, unlike existing approaches that follow their assumptions across the entire image, our algorithm validates its hypotheses and obtains more reliable estimates where possible.
In addition, we describe a Markov random field model dedicated to producing complete and regularized transmission maps given noisy and scattered estimates. Unlike traditional field models that consist of local coupling, the new model is augmented with long-range connections between pixels of similar attributes. These connections allow our algorithm to properly resolve the transmission in isolated regions where nearby pixels do not offer relevant information.
An extensive evaluation of our method over different types of images and its comparison to state-of-the-art methods over established benchmark images show a consistent improvement in the accuracy of the estimated scene transmission and recovered haze-free radiances.
The computer vision and pattern recognition communities have recently witnessed a surge of feature-based methods in object recognition and image retrieval applications. These methods allow representing images as collections of “visual words” and treat them using text search approaches following the “bag of features” paradigm. In this article, we explore analogous approaches in the 3D world applied to the problem of nonrigid shape retrieval in large databases. Using multiscale diffusion heat kernels as “geometric words,” we construct compact and informative shape descriptors by means of the “bag of features” approach. We also show that considering pairs of “geometric words” (“geometric expressions”) allows creating spatially sensitive bags of features with better discriminative power. Finally, adopting metric learning approaches, we show that shapes can be efficiently represented as binary codes. Our approach achieves state-of-the-art results on the SHREC 2010 large-scale shape retrieval benchmark.
We present
We present a new image editing method, particularly effective for sharpening major edges by increasing the steepness of transition while eliminating a manageable degree of low-amplitude structures. The seemingly contradictive effect is achieved in an optimization framework making use of