Mesh saliency via spectral processing

ACM Transactions on Graphics - Tập 33 Số 1 - Trang 1-17 - 2014
Ran Song1, Yonghuai Liu1, Ralph R. Martin2, Paul L. Rosin2
1Aberystwyth University, Aberystwyth, UK
2Cardiff University, Cardiff, UK

Tóm tắt

We propose a novel method for detecting mesh saliency, a perceptually-based measure of the importance of a local region on a 3D surface mesh. Our method incorporates global considerations by making use of spectral attributes of the mesh, unlike most existing methods which are typically based on local geometric cues. We first consider the properties of the log-Laplacian spectrum of the mesh. Those frequencies which show differences from expected behaviour capture saliency in the frequency domain. Information about these frequencies is considered in the spatial domain at multiple spatial scales to localise the salient features and give the final salient areas. The effectiveness and robustness of our approach are demonstrated by comparisons to previous approaches on a range of test models. The benefits of the proposed method are further evaluated in applications such as mesh simplification, mesh segmentation, and scan integration, where we show how incorporating mesh saliency can provide improved results.

Từ khóa


Tài liệu tham khảo

B. Alexe T. Deselaers and V. Ferrari. 2010. What is an object? In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR'10). 73--80. B. Alexe T. Deselaers and V. Ferrari. 2010. What is an object? In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR'10). 73--80.

10.1145/376957.376986

N. Aspert , D. Santa-Cruz , and T. Ebrahimi . 2002. Mesh: Measuring errors between surfaces using the hausdorff distance . In Proceedings of the IEEE International Conference on Multimedia and Expo (ICME'02) . N. Aspert, D. Santa-Cruz, and T. Ebrahimi. 2002. Mesh: Measuring errors between surfaces using the hausdorff distance. In Proceedings of the IEEE International Conference on Multimedia and Expo (ICME'02).

10.1109/34.969114

10.1145/1276377.1276404

N. Bruce and J. Tsotsos . 2006. Saliency based on information maximization . In Proceedings of the Conference on Advances in Neural Information Processing Systems (NIPS'06) . N. Bruce and J. Tsotsos. 2006. Saliency based on information maximization. In Proceedings of the Conference on Advances in Neural Information Processing Systems (NIPS'06).

R. Campbell and P. Flynn. 1998. A www-accessible 3D image and model database for computer vision research. In Empirical Evaluation Methods in Computer Vision IEEE Computer Society Press 148--154. R. Campbell and P. Flynn. 1998. A www-accessible 3D image and model database for computer vision research. In Empirical Evaluation Methods in Computer Vision IEEE Computer Society Press 148--154.

10.1111/j.1467-8659.2008.01162.x

10.1145/1531326.1531379

10.1145/2185520.2185525

P. Cignoni , M. Corsini , and G. Ranzuglia . 2008 . Meshlab: An open-source 3D mesh processing system . ERCIM News 73 , 45 -- 46 . http://meshlab.sourceforge.net/. P. Cignoni, M. Corsini, and G. Ranzuglia. 2008. Meshlab: An open-source 3D mesh processing system. ERCIM News 73, 45--46. http://meshlab.sourceforge.net/.

10.1111/1467-8659.00236

10.1145/237170.237269

10.1109/34.655652

10.1145/1462055.1462056

10.1145/1122501.1122507

10.1145/258734.258849

S. Goferman , L. Zelnik-Manor , and A. Tal . 2010. Context-aware saliency detection . In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR'10) . 2376--2383. S. Goferman, L. Zelnik-Manor, and A. Tal. 2010. Context-aware saliency detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR'10). 2376--2383.

10.1109/34.632985

10.3758/BF03195300

X. Hou and L. Zhang . 2007. Saliency detection: A spectral residual approach . In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR'07) . 1--8. X. Hou and L. Zhang. 2007. Saliency detection: A spectral residual approach. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR'07). 1--8.

I. P. Howard . 2002. Seeing in Depth . University of Toronto Press. I. P. Howard. 2002. Seeing in Depth. University of Toronto Press.

10.1145/1077399.1077406

10.1088/0266-5611/24/3/034003

10.1006/cogp.2001.0755

10.1109/34.730558

10.1145/1670671.1670676

10.1038/4511

10.1007/BF00336961

K. Koffka . 1955. Principles of Gestalt Psychology . Routledge and Kegan Paul . K. Koffka. 1955. Principles of Gestalt Psychology. Routledge and Kegan Paul.

P. Lancaster and M. Tismenetsky. 1985. The Theory of Matrices: With Applications. Academic Press. P. Lancaster and M. Tismenetsky. 1985. The Theory of Matrices: With Applications. Academic Press.

10.1145/1073204.1073244

10.5555/2354409.2354849

10.1145/1837101.1837109

10.1080/757582976

10.1023/B:VISI.0000029664.99615.94

10.1145/984952.984991

10.1023/A:1011139631724

10.1145/1141911.1141919

10.1109/TVCG.2009.208

10.1111/1467-8659.00675

10.1145/1138450.1138451

10.1023/A:1016374617369

E. Rahtu , J. Kannala , M. Salo , and J. Heikkilä . 2010. Segmenting salient objects from images and videos . In Proceedings of the 11th European Conference on Computer Vision: Part V (ECCV'10) . 366--379. E. Rahtu, J. Kannala, M. Salo, and J. Heikkilä. 2010. Segmenting salient objects from images and videos. In Proceedings of the 11th European Conference on Computer Vision: Part V (ECCV'10). 366--379.

10.1088/0954-898X_5_4_006

M. Rutishauser , M. Stricker , and M. Trobina . 1994. Merging range images of arbitrarily shaped objects . In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR'94) . M. Rutishauser, M. Stricker, and M. Trobina. 1994. Merging range images of arbitrarily shaped objects. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR'94).

10.1109/TPAMI.2005.46

10.1145/1243980.1243981

10.1007/s00371-013-0806-4

10.5555/1273240.1273243

10.1145/218380.218473

10.1016/0010-0285(80)90005-5

10.1145/192161.192241

10.1016/0042-6989(96)00002-8

10.1007/s11222-007-9033-z

10.1016/j.neunet.2006.10.001

10.3758/BF03200774

10.1145/383745.383748

10.1111/j.1467-8659.2010.01655.x

10.1145/2167076.2167079

10.1016/j.patcog.2007.06.006

10.1016/j.imavis.2008.07.009