XRR: Extreme multi-label text classification with candidate retrieving and deep ranking

Information Sciences - Tập 622 - Trang 115-132 - 2023
Jie Xiong1, Li Yu1, Xi Niu2, Youfang Leng1
1School of Information, Renmin University of China, Beijing, BJ 100872, China
2University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223-0001, United States

Tài liệu tham khảo

Zhang, 2014, A review on multi-label learning algorithms, IEEE Trans. Knowl. Data Eng., 26, 1819, 10.1109/TKDE.2013.39

Y. Prabhu, M. Varma, Fastxml: A fast, accurate and stable tree-classifier for extreme multi-label learning, in: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, 2014, pp. 263–272.

R. Babbar, B. Schölkopf, Adversarial extreme multi-label classification, arXiv preprint arXiv:1803.01570 (2018).

H. Jain, V. Balasubramanian, B. Chunduri, M. Varma, Slice: Scalable linear extreme classifiers trained on 100 million labels for related searches, in: Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, 2019, pp. 528–536.

Cover, 1999

A. Mittal, N. Sachdeva, S. Agrawal, S. Agarwal, P. Kar, M. Varma, Eclare: Extreme classification with label graph correlations, in: Proceedings of the Web Conference 2021, 2021, pp. 3721–3732.

I.E. Yen, X. Huang, W. Dai, P. Ravikumar, I. Dhillon, E. Xing, Ppdsparse: A parallel primal-dual sparse method for extreme classification, in: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017, pp. 545–553.

Y. Prabhu, A. Kag, S. Harsola, R. Agrawal, M. Varma, Parabel: Partitioned label trees for extreme classification with application to dynamic search advertising, in: Proceedings of the 2018 World Wide Web Conference, 2018, pp. 993–1002.

Y. Tagami, Annexml: Approximate nearest neighbor search for extreme multi-label classification, in: Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining, 2017, pp. 455–464.

A. Zubiaga, Enhancing navigation on wikipedia with social tags, arXiv preprint arXiv:1202.5469 (2012).

Johnson, 2019, Billion-scale similarity search with gpus, IEEE Trans. Big Data, 7, 535, 10.1109/TBDATA.2019.2921572

X. Yi, J. Yang, L. Hong, D.Z. Cheng, L. Heldt, A. Kumthekar, Z. Zhao, L. Wei, E. Chi, Sampling-bias-corrected neural modeling for large corpus item recommendations, in: Proceedings of the 13th ACM Conference on Recommender Systems, 2019, pp. 269–277.

T. Gao, X. Yao, D. Chen, Simcse: Simple contrastive learning of sentence embeddings, arXiv preprint arXiv:2104.08821 (2021).

J. Su, J. Cao, W. Liu, Y. Ou, Whitening sentence representations for better semantics and faster retrieval, arXiv preprint arXiv:2103.15316 (2021).

B. Li, H. Zhou, J. He, M. Wang, Y. Yang, L. Li, On the sentence embeddings from bert for semantic textual similarity, in: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2020, pp. 9119–9130.

D. Hendrycks, K. Gimpel, Gaussian error linear units (gelus), arXiv preprint arXiv:1606.08415 (2016).

I. Loshchilov, F. Hutter, Decoupled weight decay regularization, in: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6–9, 2019, 2019.

J. McAuley, J. Leskovec, Hidden factors and hidden topics: understanding rating dimensions with review text, in: Proceedings of the 7th ACM conference on Recommender systems, 2013, pp. 165–172.