Multi-label classification with weighted classifier selection and stacked ensemble
Tài liệu tham khảo
A. McCallum, Multi-label text classification with a mixture model trained by EM, AAAI’99 Workshop on Text Learning, 1999.
Sanden, 2011, Enhancing multi-label music genre classification through ensemble techniques, 705
H. Weng, Z. Liu, A. Maxwell, X. Li, C. Zhang, E. Peng, G. Li, A. Ou, Multi-label symptom analysis and modeling of TCM diagnosis of hypertension, in: Proceedings – 2018 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2018, 2019, pp. 1922–1929. https://doi.org/10.1109/BIBM.2018.8621173.
Jin, 2008, Multi-label literature classification based on the Gene Ontology graph, BMC Bioinf., 10.1186/1471-2105-9-525
M.L. Zhang, Z.H. Zhou, A review on multi-label learning algorithms 26 (2014) 1819–1837.
Li, 2013, Multi-label ensemble based on variable pairwise constraint projection, Inf. Sci., 222, 269, 10.1016/j.ins.2012.07.066
G. Madjarov, D. Kocev, D. Gjorgjevikj, S. Džeroski, An extensive experimental comparison of methods for multi-label learning 45 (2012) 3084–3104.
Boutell, 2004, Learning multi-label scene classification, Pattern Recogn., 37, 1757, 10.1016/j.patcog.2004.03.009
Read, 2011, Classifier chains for multi-label classification, Mach. Learn., 85, 333, 10.1007/s10994-011-5256-5
Tsoumakas, 2011, Random k-labelsets for multilabel classification, IEEE Trans. Knowl. Data Eng., 23, 1079, 10.1109/TKDE.2010.164
Zhang, 2007, ML-KNN: a lazy learning approach to multi-label learning, Pattern Recogn., 40, 2038, 10.1016/j.patcog.2006.12.019
A. Clare, R.D. King, Knowledge discovery in multi-label phenotype data, in: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2001, pp. 42–53.https://doi.org/10.1007/3-540-44794-6_4.
Elisseeff, 2002, A kernel method for multi-labelled classification, 681
Yang, 2019, Adaptive bi-weighting toward automatic initialization and model selection for HMM-based hybrid meta-clustering ensembles, IEEE Trans. Cybern., 10.1109/TCYB.2018.2809562
E.C. Polley, M.J. van der Laan, Super Learner in Prediction, U.C. Berkeley Division of Biostatistics Working Paper, 2010.
Moyano, 2018, Review of ensembles of multi-label classifiers: models, experimental study and prospects, Inf. Fusion, 44, 33, 10.1016/j.inffus.2017.12.001
G. Tsoumakas, A. Dimou, E. Spyromitros, V. Mezaris, I. Kompatsiaris, I. Vlahavas, Correlation-based pruning of stacked binary relevance models for multi-label learning, 2009, pp. 101–116.
Read, 2008, Multi-label classification using ensembles of pruned sets, in, 995
G. Tsoumakas, I. Katakis, I. Vlahavas, Mining multi-label data, in: Data Mining and Knowledge Discovery Handbook, 2009, pp. 667–685.https://doi.org/10.1007/978-0-387-09823-4_34.
Tenenboim-Chekina, 2010, Identification of label dependencies for multi-label classification, 53
D. Kocev, C. Vens, J. Struyf, S. Džeroski, Ensembles of multi-objective decision trees, in: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2007, pp. 624–631.https://doi.org/10.1007/978-3-540-74958-5_61.
Wolpert, 1992, Stacked generalization, Neural Networks, 5, 241, 10.1016/S0893-6080(05)80023-1
L. Wang, H. Shen, H. Tian, Weighted ensemble classification of multi-label data streams, in: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2017, pp. 551–562.https://doi.org/10.1007/978-3-319-57529-2_43.
W. Qu, Y. Zhang, J. Zhu, Q. Qiu, Mining multi-label concept-drifting data streams using dynamic classifier ensemble, in: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2009, pp. 308–321.https://doi.org/10.1007/978-3-642-05224-8_24.
Schapire, 2000, BoosTexter: a boosting-based system for text categorization, Mach. Learn., 39, 135, 10.1023/A:1007649029923
Spyromitros-Xioufis, 2016, Multi-target regression via input space expansion: treating targets as inputs, Mach. Learn., 10.1007/s10994-016-5546-z
M.U. Sen, H. Erdogan, Max-margin stacking and sparse regularization for linear classifier combination and selection, 2011, arXiv:1106.1684.
F. Gunes, Penalized regression methods for linear models in sas/stat, 2015.
Tai, 2012, Multilabel classification with principal label space transformation, Neural Comput., 24, 2508, 10.1162/NECO_a_00320
Wu, 2015, A geometric framework for data fusion in information retrieval, Inf. Syst., 10.1016/j.is.2015.01.001
Bonab, 2018, Goowe: geometrically optimum and online-weighted ensemble classifier for evolving data streams, ACM Trans. Knowl. Discovery Data, 12, 1, 10.1145/3139240
Büyükçakir, 2018, A novel online stacked ensemble for multi-label stream classification
Cui, 2016, High dimensional data regression using Lasso model and neural networks with random weights, Inf. Sci., 372, 505, 10.1016/j.ins.2016.08.060
Yuan, 2006, Model selection and estimation in regression with grouped variables, J. R. Stat. Soc. Ser. B: Stat. Methodol., 68, 49, 10.1111/j.1467-9868.2005.00532.x
Pan, 2017, Task sensitive feature exploration and learning for multitask graph classification, IEEE Trans. Cybern., 47, 744, 10.1109/TCYB.2016.2526058
Ito, 2017, A unified formulation and fast accelerated proximal gradient method for classification, J. Mach. Learn. Res., 18, 510
Kumar, 2019, Group preserving label embedding for multi-label classification, Pattern Recogn., 90, 23, 10.1016/j.patcog.2019.01.009
Nutini, 2015, Coordinate descent converges faster with the Gauss-Southwell rule than random selection, 1632
Simon, 2013, A sparse-group Lasso, J. Comput. Graph. Stat., 22, 231, 10.1080/10618600.2012.681250
Catalina, 2018, Accelerated block coordinate descent for sparse group Lasso, 1
Deng, 2018, Extracting cardiac dynamics within ECG signal for human identification and cardiovascular diseases classification, Neural Networks, 100, 70, 10.1016/j.neunet.2018.01.009
Tsoumakas, 2011, MULAN: a Java library for multi-label learning, J. Mach. Learn. Res., 12, 2411
Read, 2016, MEKA: a multi-label/multi-target extension to WEKA, J. Mach. Learn. Res., 17, 667
Szymánski, 2019, Scikit-multilearn: a scikit-based Python environment for performing multi-label classification, J. Mach. Learn. Res., 20, 209
Friedman, 1940, A comparison of alternative tests of significance for the problem of m rankings, Ann. Math. Stat., 11, 86, 10.1214/aoms/1177731944
Demšar, 2006, Statistical comparisons of classifiers over multiple data sets, J. Mach. Learn. Res., 7, 1
L. Sun, M. Kudo, K. Kimura, Multi-label classification with meta-label-specific features, in: Proceedings – International Conference on Pattern Recognition, 2016, pp. 1612–1617.https://doi.org/10.1109/ICPR.2016.7899867.
J. Huang, G. Li, Q. Huang, X. Wu, Learning label specific features for multi-label classification, in: Proceedings - IEEE International Conference on Data Mining, ICDM, 2016, pp. 181–190.https://doi.org/10.1109/ICDM.2015.67.
Zhou, 2012, Multi-label subspace ensemble, J. Mach. Learn. Res., 1444
Zhang, 2018, Deep extreme multi-label learning