Multi-label classification with weighted classifier selection and stacked ensemble

Information Sciences - Tập 557 - Trang 421-442 - 2021
Yuelong Xia1, Ke Chen2, Yun Yang3
1School of Information Science & Engineering, Yunnan University, 650091, China
2School of Computer Science, The University of Manchester, Manchester, M13 9PL, UK
3National Pilot School of Software, Yunnan University, 650091, China

Tài liệu tham khảo

A. McCallum, Multi-label text classification with a mixture model trained by EM, AAAI’99 Workshop on Text Learning, 1999. Sanden, 2011, Enhancing multi-label music genre classification through ensemble techniques, 705 H. Weng, Z. Liu, A. Maxwell, X. Li, C. Zhang, E. Peng, G. Li, A. Ou, Multi-label symptom analysis and modeling of TCM diagnosis of hypertension, in: Proceedings – 2018 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2018, 2019, pp. 1922–1929. https://doi.org/10.1109/BIBM.2018.8621173. Jin, 2008, Multi-label literature classification based on the Gene Ontology graph, BMC Bioinf., 10.1186/1471-2105-9-525 M.L. Zhang, Z.H. Zhou, A review on multi-label learning algorithms 26 (2014) 1819–1837. Li, 2013, Multi-label ensemble based on variable pairwise constraint projection, Inf. Sci., 222, 269, 10.1016/j.ins.2012.07.066 G. Madjarov, D. Kocev, D. Gjorgjevikj, S. Džeroski, An extensive experimental comparison of methods for multi-label learning 45 (2012) 3084–3104. Boutell, 2004, Learning multi-label scene classification, Pattern Recogn., 37, 1757, 10.1016/j.patcog.2004.03.009 Read, 2011, Classifier chains for multi-label classification, Mach. Learn., 85, 333, 10.1007/s10994-011-5256-5 Tsoumakas, 2011, Random k-labelsets for multilabel classification, IEEE Trans. Knowl. Data Eng., 23, 1079, 10.1109/TKDE.2010.164 Zhang, 2007, ML-KNN: a lazy learning approach to multi-label learning, Pattern Recogn., 40, 2038, 10.1016/j.patcog.2006.12.019 A. Clare, R.D. King, Knowledge discovery in multi-label phenotype data, in: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2001, pp. 42–53.https://doi.org/10.1007/3-540-44794-6_4. Elisseeff, 2002, A kernel method for multi-labelled classification, 681 Yang, 2019, Adaptive bi-weighting toward automatic initialization and model selection for HMM-based hybrid meta-clustering ensembles, IEEE Trans. Cybern., 10.1109/TCYB.2018.2809562 E.C. Polley, M.J. van der Laan, Super Learner in Prediction, U.C. Berkeley Division of Biostatistics Working Paper, 2010. Moyano, 2018, Review of ensembles of multi-label classifiers: models, experimental study and prospects, Inf. Fusion, 44, 33, 10.1016/j.inffus.2017.12.001 G. Tsoumakas, A. Dimou, E. Spyromitros, V. Mezaris, I. Kompatsiaris, I. Vlahavas, Correlation-based pruning of stacked binary relevance models for multi-label learning, 2009, pp. 101–116. Read, 2008, Multi-label classification using ensembles of pruned sets, in, 995 G. Tsoumakas, I. Katakis, I. Vlahavas, Mining multi-label data, in: Data Mining and Knowledge Discovery Handbook, 2009, pp. 667–685.https://doi.org/10.1007/978-0-387-09823-4_34. Tenenboim-Chekina, 2010, Identification of label dependencies for multi-label classification, 53 D. Kocev, C. Vens, J. Struyf, S. Džeroski, Ensembles of multi-objective decision trees, in: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2007, pp. 624–631.https://doi.org/10.1007/978-3-540-74958-5_61. Wolpert, 1992, Stacked generalization, Neural Networks, 5, 241, 10.1016/S0893-6080(05)80023-1 L. Wang, H. Shen, H. Tian, Weighted ensemble classification of multi-label data streams, in: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2017, pp. 551–562.https://doi.org/10.1007/978-3-319-57529-2_43. W. Qu, Y. Zhang, J. Zhu, Q. Qiu, Mining multi-label concept-drifting data streams using dynamic classifier ensemble, in: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2009, pp. 308–321.https://doi.org/10.1007/978-3-642-05224-8_24. Schapire, 2000, BoosTexter: a boosting-based system for text categorization, Mach. Learn., 39, 135, 10.1023/A:1007649029923 Spyromitros-Xioufis, 2016, Multi-target regression via input space expansion: treating targets as inputs, Mach. Learn., 10.1007/s10994-016-5546-z M.U. Sen, H. Erdogan, Max-margin stacking and sparse regularization for linear classifier combination and selection, 2011, arXiv:1106.1684. F. Gunes, Penalized regression methods for linear models in sas/stat, 2015. Tai, 2012, Multilabel classification with principal label space transformation, Neural Comput., 24, 2508, 10.1162/NECO_a_00320 Wu, 2015, A geometric framework for data fusion in information retrieval, Inf. Syst., 10.1016/j.is.2015.01.001 Bonab, 2018, Goowe: geometrically optimum and online-weighted ensemble classifier for evolving data streams, ACM Trans. Knowl. Discovery Data, 12, 1, 10.1145/3139240 Büyükçakir, 2018, A novel online stacked ensemble for multi-label stream classification Cui, 2016, High dimensional data regression using Lasso model and neural networks with random weights, Inf. Sci., 372, 505, 10.1016/j.ins.2016.08.060 Yuan, 2006, Model selection and estimation in regression with grouped variables, J. R. Stat. Soc. Ser. B: Stat. Methodol., 68, 49, 10.1111/j.1467-9868.2005.00532.x Pan, 2017, Task sensitive feature exploration and learning for multitask graph classification, IEEE Trans. Cybern., 47, 744, 10.1109/TCYB.2016.2526058 Ito, 2017, A unified formulation and fast accelerated proximal gradient method for classification, J. Mach. Learn. Res., 18, 510 Kumar, 2019, Group preserving label embedding for multi-label classification, Pattern Recogn., 90, 23, 10.1016/j.patcog.2019.01.009 Nutini, 2015, Coordinate descent converges faster with the Gauss-Southwell rule than random selection, 1632 Simon, 2013, A sparse-group Lasso, J. Comput. Graph. Stat., 22, 231, 10.1080/10618600.2012.681250 Catalina, 2018, Accelerated block coordinate descent for sparse group Lasso, 1 Deng, 2018, Extracting cardiac dynamics within ECG signal for human identification and cardiovascular diseases classification, Neural Networks, 100, 70, 10.1016/j.neunet.2018.01.009 Tsoumakas, 2011, MULAN: a Java library for multi-label learning, J. Mach. Learn. Res., 12, 2411 Read, 2016, MEKA: a multi-label/multi-target extension to WEKA, J. Mach. Learn. Res., 17, 667 Szymánski, 2019, Scikit-multilearn: a scikit-based Python environment for performing multi-label classification, J. Mach. Learn. Res., 20, 209 Friedman, 1940, A comparison of alternative tests of significance for the problem of m rankings, Ann. Math. Stat., 11, 86, 10.1214/aoms/1177731944 Demšar, 2006, Statistical comparisons of classifiers over multiple data sets, J. Mach. Learn. Res., 7, 1 L. Sun, M. Kudo, K. Kimura, Multi-label classification with meta-label-specific features, in: Proceedings – International Conference on Pattern Recognition, 2016, pp. 1612–1617.https://doi.org/10.1109/ICPR.2016.7899867. J. Huang, G. Li, Q. Huang, X. Wu, Learning label specific features for multi-label classification, in: Proceedings - IEEE International Conference on Data Mining, ICDM, 2016, pp. 181–190.https://doi.org/10.1109/ICDM.2015.67. Zhou, 2012, Multi-label subspace ensemble, J. Mach. Learn. Res., 1444 Zhang, 2018, Deep extreme multi-label learning