Visual sentiment analysis with semantic correlation enhancement
Tóm tắt
Tài liệu tham khảo
Borth D, Chen T, Ji R, Chang SF (2013) Sentibank: large-scale ontology and classifiers for detecting sentiment and emotions in visual content. In: Proceedings of the 21st ACM international conference on multimedia, association for computing machinery, New York, NY, USA. pp 459-460. https://doi.org/10.1145/2502081.2502268
Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Dehghani M, Minderer M, Heigold G, Gelly S, Uszkoreit J, Houlsby N (2020) An image is worth \(16\times 16\) words: transformers for image recognition at scale. CoRR abs/2010.11929. arXiv:2010.11929
He X, Zhang H, Li N, Feng L, Zheng F (2019) A multi-attentive pyramidal model for visual sentiment analysis. In: 2019 international joint conference on neural networks (IJCNN). pp 1–8. https://doi.org/10.1109/IJCNN.2019.8852317
Khan S, Naseer M, Hayat M, Zamir SW, Khan FS, Shah M (2022) Transformers in vision: a survey. ACM Comput Surv. https://doi.org/10.1145/3505244
Krizhevsky A, Sutskever I, Hinton GE (2017) Imagenet classification with deep convolutional neural networks. Commun ACM 60:84–90. https://doi.org/10.1145/3065386
Machajdik J, Hanbury A (2010) Affective image classification using features inspired by psychology and art theory. In: Proceedings of the 18th ACM international conference on multimedia, association for computing machinery, New York, NY, USA. pp 83-92. https://doi.org/10.1145/1873951.1873965
Mikels J, Fredrickson B, Samanez-Larkin G, Lindberg C, Maglio S, Reuter-Lorenz P (2005) Emotional category data on images from the international affective picture system. Behav Res Methods 37:626–30. https://doi.org/10.3758/BF03192732
Ou H, Qing C, Xu X, Jin J (2021) Multi-level context pyramid network for visual sentiment analysis. Sensors 21. https://www.mdpi.com/1424-8220/21/6/2136. https://doi.org/10.3390/s21062136
Rao T, Li X, Zhang H, Xu M (2019) Multi-level region-based convolutional neural network for image emotion classification. Neurocomputing 333:429–439. https://doi.org/10.1016/j.neucom.2018.12.053
She D, Sun M, Yang J (2019) Learning discriminative sentiment representation from strongly- and weakly supervised CNNs. ACM Trans Multimedia Comput Commun Appl. https://doi.org/10.1145/3326335
She D, Yang J, Cheng MM, Lai YK, Rosin PL, Wang L (2020) Wscnet: weakly supervised coupled networks for visual sentiment classification and detection. IEEE Trans Multimedia 22:1358–1371. https://doi.org/10.1109/TMM.2019.2939744
Srinivas A., Lin TY, Parmar N, Shlens J, Abbeel P, Vaswani A (2021) Bottleneck transformers for visual recognition. In: 2021 IEEE/CVF conference on computer vision and pattern recognition (CVPR). pp 16514–16524. https://doi.org/10.1109/CVPR46437.2021.01625
Wu YH, Liu Y, Zhan X, Cheng MM (2022) P2t: pyramid pooling transformer for scene understanding. IEEE Trans Pattern Anal Mach Intell. https://doi.org/10.1109/TPAMI.2022.3202765
Yamamoto T, Takeuchi S, Nakazawa A (2021) Image emotion recognition using visual and semantic features reflecting emotional and similar objects. IEICE Trans Inf Syst 104:1691–1701. https://doi.org/10.1587/transinf.2020EDP7218
Yang J, Li J, Wang X, Ding Y, Gao X (2021) Stimuli-aware visual emotion analysis. IEEE Trans Image Process 30:7432–7445. https://doi.org/10.1109/TIP.2021.3106813. arXiv:2109.01812
Yang J, She D, Sun M (2017) Joint image emotion classification and distribution learning via deep convolutional neural network. In: Proceedings of the twenty-sixth international joint conference on artificial intelligence, IJCAI-17, pp 3266–3272. https://doi.org/10.24963/ijcai.2017/456
Yang J, She D, Sun M, Cheng MM, Rosin PL, Wang L (2018) Visual sentiment prediction based on automatic discovery of affective regions. IEEE Trans Multimedia 20:2513–2525. https://doi.org/10.1109/TMM.2018.2803520
Yanulevskaya V, van Gemert J, Roth K, Herbold A, Sebe N, Geusebroek J (2008) Emotional valence categorization using holistic image features. In: 2008 15th IEEE international conference on image processing. pp 101–104. https://doi.org/10.1109/ICIP.2008.4711701
Zhang W, He X, Lu W (2020) Exploring discriminative representations for image emotion recognition with CNNs. IEEE Trans Multimedia 22:515–523. https://doi.org/10.1109/TMM.2019.2928998
Zhao S (2016) Image emotion computing. In: Proceedings of the 24th ACM international conference on multimedia, association for computing machinery, New York, NY, USA. pp 1435–1439. https://doi.org/10.1145/2964284.2971473
Zhao S, Gao Y, Jiang X, Yao H, Chua TS, Sun X (2014) Exploring principles-of-art features for image emotion recognition. In: Proceedings of the 22nd ACM international conference on multimedia, association for computing machinery, New York, NY, USA. pp 47–56. https://doi.org/10.1145/2647868.2654930
Zhao S, Jia Z, Chen H, Li L, Ding G, Keutzer K (2019) Pdanet: polarity-consistent deep attention network for fine-grained visual emotion regression. In: Proceedings of the 27th ACM international conference on multimedia, association for computing machinery, New York, NY, USA. pp 192–201. https://doi.org/10.1145/3343031.3351062
Zhao S, Yao X, Yang J, Jia G, Ding G, Chua TS, Schuller BW, Keutzer K (2021) Affective image content analysis: two decades review and new perspectives. IEEE Trans Pattern Anal Mach Intell. https://doi.org/10.1109/TPAMI.2021.3094362