Region-based convolutional neural network using group sparse regularization for image sentiment classification
Tóm tắt
Từ khóa
Tài liệu tham khảo
J. Krumm, N. Davies, C. Narayanaswami, User-generated content [J]. IEEE Pervasive Computing 7(4), 10–11 (2008)
A.M. Kaplan, M. Haenlein, Users of the world, unite! The challenges and opportunities of social media [J]. Business horizons 53(1), 59–68 (2010)
S. Zhao, H. Yao, Y. Gao, et al., Predicting personalized image emotion perceptions in social networks [J]. IEEE Trans. Affect. Comput. 9(4), 526-540 (2016)
Q. You, H. Jin, J. Luo, Visual sentiment analysis by attending on local image regions [C]//AAAI (2017), pp. 231–237
S. Zhang, Z. Wei, Y. Wang, T. Liao, Sentiment analysis of Chinese micro-blog text based on extended sentiment dictionary. Futur. Gener. Comput. Syst. 81, 395–403 (2018)
E. Cambria, S. Poria, A. Gelbukh, et al., Sentiment analysis is a big suitcase [J]. IEEE Intell. Syst. 32(6), 74–80 (2017)
Q. You, Sentiment and emotion analysis for social multimedia: methodologies and applications [C]//Proceedings of the 2016 ACM on Multimedia Conference. ACM (2016), pp. 1445–1449
J. Yang, D. She, M. Sun, et al., Visual sentiment prediction based on automatic discovery of affective regions [J]. IEEE Transactions on Multimedia 20(9), 2513-2525 (2018)
M.A. Nicolaou, H. Gunes, M. Pantic, A multi-layer hybrid framework for dimensional emotion classification [C]//Proceedings of the 19th ACM international conference on Multimedia. ACM (2011), pp. 933–936
X. He, W. Zhang, Emotion recognition by assisted learning with convolutional neural networks [J]. Neurocomputing 291, 187–194 (2018)
M.L. Zhang, Z.H. Zhou, A review on multi-label learning algorithms [J]. IEEE Trans. Knowl. Data Eng. 26(8), 1819–1837 (2014)
S. Zhao, Y. Gao, X. Jiang, et al., Exploring principles-of-art features for image emotion recognition [C]//Proceedings of the 22nd ACM international conference on Multimedia. ACM (2014), pp. 47–56
Q. Zhou, B. Zhong, Y. Zhang, J. Li, Y. Fu, Deep alignment network based multi-person tracking with occlusion and motion reasoning [J]. IEEE Transactions on Multimedia https://doi.org/10.1109/TMM.2018.2875360 (2018)
B. Zhong, B. Bai, J. Li, Y. Zhang, Y. Fu, Hierarchical tracking by reinforcement learning based searching and coarse-to-fine verifying [J]. IEEE Trans. Image Process. https://doi.org/10.1109/TIP.2018.2885238 (2018)
B. Bai, B. Zhong, G. Ouyang, et al., Kernel correlation filters for visual tracking with adaptive fusion of heterogeneous cues [J]. Neurocomputing 286, 109-120 (2018)
W. Long, Y.-r. Tang, Y.-j. Tian, Investor sentiment identification based on the universum SVM. Neural Comput. & Applic. 30(2), 661–670 (2018)
K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition [J]. arXiv:1409.1556 (2014)
X. Li, Y. Jiang, M. Chen, et al., Research on iris image encryption based on deep learning [J]. EURASIP Journal on Image and Video Processing 2018(1), 126 (2018)
Q. You, J. Luo, H. Jin, et al., Robust Image Sentiment Analysis Using Progressively Trained and Domain Transferred Deep Networks [C]//AAAI (2015), pp. 381–388
C.L. Zitnick, P. Dollár, Edge Boxes: Locating Object Proposals from Edges [C]//European Conference on Computer Vision (Springer, Cham, 2014), pp. 391–405
J. Yang, D. She, M. Sun, Joint image emotion classification and distribution learning via deep convolutional neural network [C]//proceedings of the 26th international joint conference on Artificial Intelligence (2017)
K. Song, T. Yao, Q. Ling, et al., Boosting image Sentiment analysis with visual attention [J]. Neurocomputing 312,218-228 (2018)
J.R.R. Uijlings, K.E.A. Van De Sande, T. Gevers, et al., Selective search for object recognition [J]. Int. J. Comput. Vis. 104(2), 154–171 (2013)
Cand{\`e} s E J, Wakin M B. An introduction to compressive sampling [J]. IEEE Signal Process. Mag., 2008, 25(2): 21–30
L. Baldassarre, N. Bhan, V. Cevher, et al., Group-sparse model selection: Hardness and relaxations [J]. IEEE Trans. Information Theory 62(11), 6508–6534 (2016)
S. Scardapane, D. Comminiello, A. Hussain, et al., Group sparse regularization for deep neural networks [J]. Neurocomputing 241, 81–89 (2017)
J.A. Mikels, B.L. Fredrickson, G.R. Larkin, et al., Emotional category data on images from the international affective picture system [J]. Behav. Res. Methods 37(4), 626–630 (2005)
J. Machajdik, A. Hanbury, Affective image classification using features inspired by psychology and art theory [C]//Proceedings of the 18th ACM international conference on Multimedia. ACM (2010), pp. 83–92
G. Levi, T. Hassner, Emotion recognition in the wild via convolutional neural networks and mapped binary patterns [C]//proceedings of the 2015 ACM on international conference on multimodal interaction. ACM (2015), pp. 503–510
P.J. Lang, M.M. Bradley, B.N. Cuthbert, International affective picture system (IAPS): Technical manual and affective ratings [M]. NIMH Center for the Study of Emotion and Attention, 39–58 (1997)