Region-based convolutional neural network using group sparse regularization for image sentiment classification

Springer Science and Business Media LLC - Tập 2019 Số 1 - 2019
Hao Xiong1, Qing Liu1, Shaoyi Song1, Yuanyuan Cai1
1School of Computer and Information Engineering, Beijing Technology and Business University, No,11 Fuchengfu Road, Beijing, 100048, People’s Republic of China

Tóm tắt

Từ khóa


Tài liệu tham khảo

J. Krumm, N. Davies, C. Narayanaswami, User-generated content [J]. IEEE Pervasive Computing 7(4), 10–11 (2008)

A.M. Kaplan, M. Haenlein, Users of the world, unite! The challenges and opportunities of social media [J]. Business horizons 53(1), 59–68 (2010)

S. Zhao, H. Yao, Y. Gao, et al., Predicting personalized image emotion perceptions in social networks [J]. IEEE Trans. Affect. Comput. 9(4), 526-540 (2016)

Q. You, H. Jin, J. Luo, Visual sentiment analysis by attending on local image regions [C]//AAAI (2017), pp. 231–237

S. Zhang, Z. Wei, Y. Wang, T. Liao, Sentiment analysis of Chinese micro-blog text based on extended sentiment dictionary. Futur. Gener. Comput. Syst. 81, 395–403 (2018)

E. Cambria, S. Poria, A. Gelbukh, et al., Sentiment analysis is a big suitcase [J]. IEEE Intell. Syst. 32(6), 74–80 (2017)

Q. You, Sentiment and emotion analysis for social multimedia: methodologies and applications [C]//Proceedings of the 2016 ACM on Multimedia Conference. ACM (2016), pp. 1445–1449

J. Yang, D. She, M. Sun, et al., Visual sentiment prediction based on automatic discovery of affective regions [J]. IEEE Transactions on Multimedia 20(9), 2513-2525 (2018)

M.A. Nicolaou, H. Gunes, M. Pantic, A multi-layer hybrid framework for dimensional emotion classification [C]//Proceedings of the 19th ACM international conference on Multimedia. ACM (2011), pp. 933–936

X. He, W. Zhang, Emotion recognition by assisted learning with convolutional neural networks [J]. Neurocomputing 291, 187–194 (2018)

M.L. Zhang, Z.H. Zhou, A review on multi-label learning algorithms [J]. IEEE Trans. Knowl. Data Eng. 26(8), 1819–1837 (2014)

S. Zhao, Y. Gao, X. Jiang, et al., Exploring principles-of-art features for image emotion recognition [C]//Proceedings of the 22nd ACM international conference on Multimedia. ACM (2014), pp. 47–56

Q. Zhou, B. Zhong, Y. Zhang, J. Li, Y. Fu, Deep alignment network based multi-person tracking with occlusion and motion reasoning [J]. IEEE Transactions on Multimedia https://doi.org/10.1109/TMM.2018.2875360 (2018)

B. Zhong, B. Bai, J. Li, Y. Zhang, Y. Fu, Hierarchical tracking by reinforcement learning based searching and coarse-to-fine verifying [J]. IEEE Trans. Image Process. https://doi.org/10.1109/TIP.2018.2885238 (2018)

B. Bai, B. Zhong, G. Ouyang, et al., Kernel correlation filters for visual tracking with adaptive fusion of heterogeneous cues [J]. Neurocomputing 286, 109-120 (2018)

W. Long, Y.-r. Tang, Y.-j. Tian, Investor sentiment identification based on the universum SVM. Neural Comput. & Applic. 30(2), 661–670 (2018)

K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition [J]. arXiv:1409.1556 (2014)

X. Li, Y. Jiang, M. Chen, et al., Research on iris image encryption based on deep learning [J]. EURASIP Journal on Image and Video Processing 2018(1), 126 (2018)

Q. You, J. Luo, H. Jin, et al., Robust Image Sentiment Analysis Using Progressively Trained and Domain Transferred Deep Networks [C]//AAAI (2015), pp. 381–388

C.L. Zitnick, P. Dollár, Edge Boxes: Locating Object Proposals from Edges [C]//European Conference on Computer Vision (Springer, Cham, 2014), pp. 391–405

J. Yang, D. She, M. Sun, Joint image emotion classification and distribution learning via deep convolutional neural network [C]//proceedings of the 26th international joint conference on Artificial Intelligence (2017)

K. Song, T. Yao, Q. Ling, et al., Boosting image Sentiment analysis with visual attention [J]. Neurocomputing 312,218-228 (2018)

J.R.R. Uijlings, K.E.A. Van De Sande, T. Gevers, et al., Selective search for object recognition [J]. Int. J. Comput. Vis. 104(2), 154–171 (2013)

Cand{\`e} s E J, Wakin M B. An introduction to compressive sampling [J]. IEEE Signal Process. Mag., 2008, 25(2): 21–30

L. Baldassarre, N. Bhan, V. Cevher, et al., Group-sparse model selection: Hardness and relaxations [J]. IEEE Trans. Information Theory 62(11), 6508–6534 (2016)

S. Scardapane, D. Comminiello, A. Hussain, et al., Group sparse regularization for deep neural networks [J]. Neurocomputing 241, 81–89 (2017)

J.A. Mikels, B.L. Fredrickson, G.R. Larkin, et al., Emotional category data on images from the international affective picture system [J]. Behav. Res. Methods 37(4), 626–630 (2005)

J. Machajdik, A. Hanbury, Affective image classification using features inspired by psychology and art theory [C]//Proceedings of the 18th ACM international conference on Multimedia. ACM (2010), pp. 83–92

G. Levi, T. Hassner, Emotion recognition in the wild via convolutional neural networks and mapped binary patterns [C]//proceedings of the 2015 ACM on international conference on multimodal interaction. ACM (2015), pp. 503–510

P.J. Lang, M.M. Bradley, B.N. Cuthbert, International affective picture system (IAPS): Technical manual and affective ratings [M]. NIMH Center for the Study of Emotion and Attention, 39–58 (1997)