Understanding domain movements and interactions of Pseudomonas aeruginosa lipase with lipid molecule tristearoyl glycerol: A molecular dynamics approach
Tài liệu tham khảo
Reis, 2009, Lipases at interfaces: a review, Adv. Colloid Interface Sci., 147, 237, 10.1016/j.cis.2008.06.001
Jaeger, 1998, Microbial lipases form versatile tools for biotechnology, Trends Biotechnol., 16, 396, 10.1016/S0167-7799(98)01195-0
Jaeger, 1999, Bacterial biocatalysis: molecular biology, three-dimensional structures and biotechnological applications of lipases, Annu. Rev. Microbiol., 53, 315, 10.1146/annurev.micro.53.1.315
Schrag, 1997, Lipases and alpha/beta hydrolase fold, Methods Enzymol., 284, 85, 10.1016/S0076-6879(97)84006-2
Cygler, 1993, Relationship between sequence conservation and three-dimensional structure in a large family of esterases, lipases, and related proteins, Protein Sci., 2, 366, 10.1002/pro.5560020309
Brzozowski, 1991, A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex, Nature, 351, 491, 10.1038/351491a0
Johnson, 2012, Solvent-dependent gating motions of an extremophilic Pseudomonas aeruginosa lipase, Biochemistry, 51, 6238, 10.1021/bi300557y
Nellas, 2013, Solvent-induced α- to 3 10 -helix transition of an amphiphilic peptide, Biochemistry, 52, 7137, 10.1021/bi400537z
Johnson, 2016, Pressure induced conformational switch of an interfacial protein lipase” proteins: structure, function, Bioinformatics, 84, 820
Peters, 2002, The dynamic response of a fungal lipase in the presence of charged surfactants, Colloids Surfaces B Biointerfaces, 26, 84, 10.1016/S0927-7765(01)00307-1
Peters, 2001, Influence of a lipid interface on protein dynamics in a fungal lipase, Biophys. J., 81, 3052, 10.1016/S0006-3495(01)75944-9
Cherukuvada, 2005, Evidence of a double-lid movement in Pseudomonas aeruginosa lipase: insights from molecular dynamics simulations, PLoS Comput. Biol., 1, 10.1371/journal.pcbi.0010028
Nardini, 2000, Crystal structure of Pseudomonas aeruginosa lipase in the open conformation. The prototype for family I.1 of bacterial lipases, J. Biol. Chem., 275, 31219, 10.1074/jbc.M003903200
Kleywegt, 2007, 94
Canzar, 2013, Charge group partitioning in biomolecular simulation, J. Comput. Biol., 20, 188, 10.1089/cmb.2012.0239
Malde, 2011, An Automated force field Topology Builder (ATB) and repository: version 1.0, J. Chem. Theor. Comput., 7, 4026, 10.1021/ct200196m
Hess, 2008, GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation, J. Chem. Theor. Comput., 4, 435, 10.1021/ct700301q
Miyamoto, 1992, SETTLE: an analytical version of the SHAKE and RATTLE algorithms for rigid water models, J. Comput. Chem., 13, 952, 10.1002/jcc.540130805
Hess, 1997, LINCS: a linear constraint solver for molecular simulations, J. Comput. Chem., 18, 1463, 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
Humphrey, 1996, VMD: visual molecular dynamics, J. Mol. Graph., 14, 33, 10.1016/0263-7855(96)00018-5
Pettersen, 2004, UCSF chimera—a visualization system for exploratory research and analysis, J. Comput. Chem., 25, 1605, 10.1002/jcc.20084
Paul