Understanding domain movements and interactions of Pseudomonas aeruginosa lipase with lipid molecule tristearoyl glycerol: A molecular dynamics approach

Journal of Molecular Graphics and Modelling - Tập 85 - Trang 190-197 - 2018
Kothai Thiruvengadam1, Sarath Kumar Baskaran1, Gautam Pennathur1
1Department of Biotechnology, Anna University, Chennai, 600025, India

Tài liệu tham khảo

Reis, 2009, Lipases at interfaces: a review, Adv. Colloid Interface Sci., 147, 237, 10.1016/j.cis.2008.06.001

Jaeger, 1998, Microbial lipases form versatile tools for biotechnology, Trends Biotechnol., 16, 396, 10.1016/S0167-7799(98)01195-0

Jaeger, 1999, Bacterial biocatalysis: molecular biology, three-dimensional structures and biotechnological applications of lipases, Annu. Rev. Microbiol., 53, 315, 10.1146/annurev.micro.53.1.315

Schrag, 1997, Lipases and alpha/beta hydrolase fold, Methods Enzymol., 284, 85, 10.1016/S0076-6879(97)84006-2

Ollis, 1992, The alpha/beta hydrolase fold, Protein Eng., 5, 197, 10.1093/protein/5.3.197

Cygler, 1993, Relationship between sequence conservation and three-dimensional structure in a large family of esterases, lipases, and related proteins, Protein Sci., 2, 366, 10.1002/pro.5560020309

Brzozowski, 1991, A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex, Nature, 351, 491, 10.1038/351491a0

Johnson, 2012, Solvent-dependent gating motions of an extremophilic Pseudomonas aeruginosa lipase, Biochemistry, 51, 6238, 10.1021/bi300557y

Nellas, 2013, Solvent-induced α- to 3 10 -helix transition of an amphiphilic peptide, Biochemistry, 52, 7137, 10.1021/bi400537z

Johnson, 2016, Pressure induced conformational switch of an interfacial protein lipase” proteins: structure, function, Bioinformatics, 84, 820

Peters, 2002, The dynamic response of a fungal lipase in the presence of charged surfactants, Colloids Surfaces B Biointerfaces, 26, 84, 10.1016/S0927-7765(01)00307-1

Peters, 2001, Influence of a lipid interface on protein dynamics in a fungal lipase, Biophys. J., 81, 3052, 10.1016/S0006-3495(01)75944-9

Cherukuvada, 2005, Evidence of a double-lid movement in Pseudomonas aeruginosa lipase: insights from molecular dynamics simulations, PLoS Comput. Biol., 1, 10.1371/journal.pcbi.0010028

Nardini, 2000, Crystal structure of Pseudomonas aeruginosa lipase in the open conformation. The prototype for family I.1 of bacterial lipases, J. Biol. Chem., 275, 31219, 10.1074/jbc.M003903200

Kleywegt, 2007, 94

Canzar, 2013, Charge group partitioning in biomolecular simulation, J. Comput. Biol., 20, 188, 10.1089/cmb.2012.0239

Malde, 2011, An Automated force field Topology Builder (ATB) and repository: version 1.0, J. Chem. Theor. Comput., 7, 4026, 10.1021/ct200196m

Hess, 2008, GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation, J. Chem. Theor. Comput., 4, 435, 10.1021/ct700301q

Essman, 1995, A smooth particle mesh Ewald method, J. Chem. Phys., 103, 8577, 10.1063/1.470117

Berendsen, 1984, MD with coupling to an external bath, J. Chem. Phys., 81, 3684, 10.1063/1.448118

Miyamoto, 1992, SETTLE: an analytical version of the SHAKE and RATTLE algorithms for rigid water models, J. Comput. Chem., 13, 952, 10.1002/jcc.540130805

Hess, 1997, LINCS: a linear constraint solver for molecular simulations, J. Comput. Chem., 18, 1463, 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H

Humphrey, 1996, VMD: visual molecular dynamics, J. Mol. Graph., 14, 33, 10.1016/0263-7855(96)00018-5

Pettersen, 2004, UCSF chimera—a visualization system for exploratory research and analysis, J. Comput. Chem., 25, 1605, 10.1002/jcc.20084

Paul

Liebeton, 2001, Disulfide bond in Pseudomonas aeruginosa lipase stabilizes the structure but is not required for interaction with its foldase, J. Bacteriol., 183, 597, 10.1128/JB.183.2.597-603.2001