HOLE: A program for the analysis of the pore dimensions of ion channel structural models

Journal of Molecular Graphics - Tập 14 - Trang 354-360 - 1996
Oliver S. Smart1, Joseph G. Neduvelil1, Xiaonan Wang1, B.A. Wallace1, Mark S.P. Sansom2
1Department of Crystallography, Birkbeck College, London, England
2Laboratory of Molecular Biophysics, University of Oxford, Oxford, England

Tài liệu tham khảo

Walker, 1996, Membrane proteins, membrane protein structure, Curr. Opin. Struct. Biol., 6, 457, 10.1016/S0959-440X(96)80109-6 Hille, 1992 Montal, 1996, Protein folds in channel structure, Curr. Opin. Struct. Biol., 6, 499, 10.1016/S0959-440X(96)80115-1 Adams, 1995, Computational searching and mutagenesis suggest a structure for the pentameric transmembrane domain of phospholamban, Nature Struct. Biol., 2, 154, 10.1038/nsb0295-154 Sankararamakrishnan, 1996, The pore domain of nicotinic acetylcholine receptor: Molecular, modelling, pore dimensions and electrostatics, Biophys. J., 71, 1659, 10.1016/S0006-3495(96)79370-0 Smart, 1993, The pore dimensions of gramicidin A, Biophys. J., 65, 2455, 10.1016/S0006-3495(93)81293-1 Connolly, 1983, Solvent accessible surfaces of proteins and nucleic acids, Science, 221, 709, 10.1126/science.6879170 Kleywegt, 1994, Detection, delineation, measurement and display of cavities in macromolecular structures, Acta Crystallogr. Sect. D, 50, 178, 10.1107/S0907444993011333 Williams, 1994, Buried waters and internal cavities in monomeric proteins, Protein Sci., 3, 1224, 10.1002/pro.5560030808 Laskowski, 1995, Surfnet—a program for visualizing molecular surfaces, cavities, and intermolecular interactions, J. Mol. Graphics, 13, 323, 10.1016/0263-7855(95)00073-9 Smart, 1997, A novel method for structure-based prediction of ion channel conductance properties, Biophys. J., 72, 1109, 10.1016/S0006-3495(97)78760-5 Smart, 1994, Preliminary analysis of the pore dimensions of annexin V., Biochem. Soc. Trans., 22, 146s, 10.1042/bst022146s Ketchem, 1993, High-resolution conformation of gramicidin-A in a lipid bilayer by solid-state NMR, Science, 261, 1457, 10.1126/science.7690158 Arseniev, 1985, 1H-NMR study of gramicidin A transmembrane ion channel: Head-to-head right handed single stranded helices, FEBS Lett., 186, 168, 10.1016/0014-5793(85)80702-X Cowan, 1992, Crystal structures explain functional properties of two E. coli porins, Nature (London), 358, 727, 10.1038/358727a0 Weiss, 1992, Structure of porin refined at 1.8Å resolution, J. Mol. Biol., 227, 493, 10.1016/0022-2836(92)90903-W Sansom, 1995, Transbilayer pores formed by beta-barresl: Molecular modeling of pore structures and properties, Biophys. J., 69, 1334, 10.1016/S0006-3495(95)80000-7 Schirmer, 1995, Structural basis for sugar translocation through maltoporin channels at 3.1Å resolution, Science, 267, 512, 10.1126/science.7824948 Merritt, 1994, Crystal-structure of cholera-toxin B-pentamer bound to receptor g(m1) pentasaccharide, Protein Sci., 3, 166, 10.1002/pro.5560030202 Ghadiri, 1993, Self-assembling organic nanotubes based on a cyclic peptide architecture, Nature (London), 366, 324, 10.1038/366324a0 Krasilnikov, 1991, The ionic channels formed by cholera toxin in planar bilayer lipid membranes are entirely attributable to its B-subunit, Biochim. Biophys. Acta, 1067, 166, 10.1016/0005-2736(91)90039-B Tosteson, 1978, Bilayers containing gangliosides develop channels when exposed to cholera toxin, Nature (London), 275, 142, 10.1038/275142a0 Zhang, 1995, The three-dimensional crystal structure of cholera toxin, J. Mol. Biol., 251, 563, 10.1006/jmbi.1995.0456 Jap, 1990, Biophysics of the structure and function of porins, Q. Rev. Biophys., 23, 367, 10.1017/S003358350000559X