Tuổi U-Pb zircon, đặc điểm địa hóa và thành phần đồng vị Sr-Nd-Hf của granitoid Neoproterozoic ở rìa tây bắc của khối Yangtze (Nam Trung Quốc): Những hệ quả cho sự tiến hóa kiến tạo Neoproterozoic

Journal of Earth Science - Tập 20 - Trang 659-680 - 2009
Rong Liu1, Benren Zhang1, Hongfei Zhang1, Honglin Yuan2
1State Key Laboratory of Geological Processes and Mineral Resources, Faculty of Earth Sciences, China University of Geosciences, Wuhan, China
2State Key Laboratory of Continental Dynamics, Northwest University, Xi’an, China

Tóm tắt

Sự xuất hiện rộng rãi của magmatism Neoproterozoic dọc theo khối Yangtze mang lại thông tin quan trọng để hiểu biết về sự tiến hóa Neoproterozoic của khối này. Tại rìa tây bắc của khối Yangtze, phức hợp xâm nhập Hannan (汉南) bao gồm các granitoid Wudumen (五堵门), Erliba (二里坝) và Zushidian (祖师殿). Bằng phương pháp xác định tuổi zircon U-Pb LA-ICP-MS, các granitoid Wudumen và Erliba thu được tuổi kết tinh magma lần lượt là 785±4 và 778±3 triệu năm. Mẫu từ ba granitoid này cho thấy hàm lượng SiO2 biến đổi từ 58.8% đến 72.6%. Chúng được đặc trưng bởi sự phong phú của Al2O3 (14.97%–17.87%), Na2O (3.80%–5.33%) và Sr (504 ppm–741 ppm), và thiếu hụt Y (<19 ppm) và HREE (ví dụ, Yb<1.6 ppm), dẫn đến tỷ lệ Sr/Y (29–161) và (La/Yb)N (7.3–27.8) cao. Các đặc điểm địa hóa của các granitoid này tương đồng với adakite. Các granitoid có giá trị zircon ɛHf(t) từ +3.65 đến +10.05, giá trị toàn bộ đá ɛNd(t) từ −0.09 đến +2.98 và tỷ lệ 87Sr/86Sr ban đầu toàn bộ đá từ 0.703 4 đến 0.703 9, cho thấy magma của chúng bắt nguồn từ một nguồn vỏ địa sinh trẻ. Cùng với các thành phần địa hóa và đồng vị Hf-Sr-Nd, có thể cho rằng các granitoid hình thành trong môi trường cung đảo và bắt nguồn từ sự nấu chảy một phần của một phiến đại dương bị chìm. Các kết quả này hỗ trợ mô hình rằng khối Yangtze được bao quanh bởi đại dương và magmatism cung đảo ở các rìa phía bắc và tây bắc của nó trong thời kỳ Neoproterozoic.

Từ khóa

#neoproterozoic; granitoids; U-Pb zircon dating; geochemical characteristics; Sr-Nd-Hf isotopes; Yangtze block

Tài liệu tham khảo

Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chemical Geology, 192(1–2): 59–79 Barnes, C. G., Petersen, S. W., Kistler, R. W., et al., 1996. Source and Tectonic Implications of Tonalite-Trondhjemite Magmatism in the Klamath Mountains. Contrib. Mineral. Petrol., 123(1): 40–60 Blichert-Toft, J., Albarede, F., 1997. The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System. Earth and Planetary Science Letters, 148(1–2): 243–258 Castillo, P. R., 2006. An Overview of Adakite Petrogenesis. Chinese Science Bulletin, 51(3): 258–268 Castillo, P. R., Janney, P. E., Solidum, R. U., 1999. Petrology and Geochemistry of Camiguin Island, Southern Philippines: Insights to the Source of Adakites and Other Lavas in a Complex Arc Setting. Contrib. Mineral. Petrol., 134(1): 33–51 Chen, J., Foland, K. A., Xing, F., et al., 1991. Magmatism along the Southeast Margin of the Yangtze Block: Precambrian Collision of the Yangtze and Cathysia Blocks of China. Geology, 19(8): 815–818 Chu, N. C., Taylor, R. N., Chavagnac, V., et al., 2002. Hf Isotope Ratio Analysis Using Multi-collector Inductively Coupled Plasma Mass Spectrometry: An Evaluation of Isobaric Interference Corrections. J. Anal. Atom. Spectrom., 17: 1567–1574 Chung, S. L., Liu, D. Y., Ji, J. Q., et al., 2003. Adakites from Continental Collision Zones: Melting of Thickened Lower Crust beneath Southern Tibet. Geology, 31(11): 1021–1024 Condie, K. C., 2005. TTGs and Adakites: Are They both Slab Melts? Lithos, 80(1–4): 33–44 DeBievre, P., Taylor, P. D. P., 1993. Table of the Isotopic Composition of the Elements. Int. J. Mass. Spectrom. Ion Process, 123: 149 Defant, M. J., Drummond, M. S., 1990a. Derivation of Some Modern Arc Magmas by the Melting of Young Subducted Lithosphere. Nature, 347(6294): 662–665 Defant, M. J., Drummond, M. S., 1990b. Derivation of Some Modern Magmas through Melting of Young Subducted Lithosphere. EOS, Transactions, American Geophysical Union, 71(43): 1715 Defant, M. J., Jackson, T. E., Drummond, M. S., et al., 1992. The Geochemistry of Young Volcanism throughout Western Panama and Southeastern Costa-Rica: An Overview. Journal of the Geological Society, 149(4): 569–579 Drummond, M. S., Defant, M. J., Kepezhinskas, P. K., 1996. Petrogenesis of Slab-Derived Trondhjemite-Tonalite-Dacite/Adakite Magmas. Transactions of the Royal Society of Edinburgh-Earth Sciences, 87: 205–215 Gao, S., Ling, W. L., Qiu, Y. M., et al., 1999. Contrasting Geochemical and Sm-Nd Isotopic Compositions of Archean Metasediments from the Kongling High-Grade Terrain of the Yangtze Craton: Evidence for Cratonic Evolution and Redistribution of REE during Crustal Anatexis. Geochimica et Cosmochimica Acta, 63(13–14): 2071–2088 Gao, S., Rudnick, R. L., Yuan, H. L., et al., 2005. Recycling Lower Continental Crust in the North China Craton. Nature, 432(7019): 892–897 Gao, S., Zhang, B. R., Li, Z. X., 1990. Geochemical Evidence for Proterozoic Continental Arc and Continental-Margin Rift Magmatism along the Northern Margin of the Yangtze Craton, South China. Precambrian Research, 47(3–4): 205–221 Garrison, J. M., Davidson, J. P., 2003. Dubious Case for Slab Melting in the Northern Volcanic Zone of the Andes. Geology, 31: 565–568 Griffin, W. L., Wang, X., Jackson, S. E., et al., 2002. Zircon Chemistry and Magma Mixing, SE China: In-situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 61(3–4): 237–269 Guo, L. Z., Shi, Y. S., Ma, R. S., 1980. The Geotectonic Framework and Crustal Evolution of South China. Scientific Paper on Geology for International Exchange. Geological Publishing House, Beijing (in Chinese with English Abstract) Gutscher, M. A., Maury, R., Eissen, J. P., et al., 2000. Can Slab Melting be Caused by Flat Subduction? Geology, 28(6): 535–538 Hou, Z. Q., Gao, Y. F., Qu, X. M., et al., 2004. Origin of Adakitic Intrusives Generated during Mid-Miocene East-West Extension in Southern Tibet. Earth and Planetary Science Letters, 220(1–2): 139–155 Kay, R. W., Kay, S. M., 2002. Andean Adakites: Three Ways to Make Them. Acta Petrologica Sinica, 18(3): 303–311 Kay, S. M., Ramos, V. A., Marquez, M., 1993. Evidence in Cerro Pampa Volcanic Rocks for Slab-Melting Prior to Ridge-Trench Collision in Southern South America. Journal of Geology, 101(6): 703–714 Kepezhinskas, P. K., McDermott, F., Defant, M. J., et al., 1997. Trace Element and Sr-Nd-Pb Isotopic Constraints on a Three-Component Model of Kamchatka Arc Petrogenesis. Geochimica et Cosmochimica Acta, 61(3): 577–600 Li, X. H., 1999. U-Pb Zircon Ages of Granites from the Southern Margin of the Yangtze Block: Timing of Neoproterozoic Jinning: Orogeny in SE China and Implications for Rodinia Assembly. Precambrian Research, 97(1–2): 43–57 Li, X. H., Li, Z. X., Sinclair, J. A., et al., 2003a. Neoproterozoic Granitoids in South China: Crustal Melting above a Mantle Plume at ca. 825 Ma? Precambrian Research, 122(1–4): 45–83 Li, X. H., Li, Z. X., Sinclair, J. A., et al., 2006. Revisiting the “Yanbian Terrane”: Implications for Neoproterozoic Tectonic Evolution of the Western Yangtze Block, South China. Precambrian Research, 151(1–2): 14–30 Li, X. H., Li, Z. X., Sinclair, J. A., et al., 2007. Reply to the Comment by Zhou et al. on: “Revisiting the “Yanbian Terrane”: Implications for Neoproterozoic Tectonic Evolution of the Western Yangtze Block, South China” (Precambrian Research, 151: 14–30). Precambrian Research, 155(3–4): 318–323 Li, X. H., Li, Z. X., Zhou, H. W., et al., 2002. U-Pb Zircon Geochronology, Geochemistry and Nd Isotopic Study of Neoproterozoic Bimodal Volcanic Rocks in the Kangdian Rift of South China: Implications for the Initial Rifting of Rodinia. Precambrian Research, 113(1–2): 135–154 Li, X. H., Li, Z. X., Zhou, H. W., et al., 2003b. SHRIMP U-Pb Zircon Age, Geochemistry and Nd Isotope of the Guandaoshan Pluton in SW Sichuan: Petrogenesis and Tectonic Significance. Science in China (Series D), 46(S1): 73–83 Li, X. H., McCulloch, M. T., 1996. Secular Variation in the Nd Isotopic Composition of Neoproterozoic Sediments from the Southern Margin of the Yangtze Block: Evidence for a Proterozoic Continental Collision in Southeast China. Precambrian Research, 76(1–2): 67–76 Li, Z. X., 1999. 830–820 Ma Mafic to Felsic Igneous Activity in South China and the Breakup of Rodinia. Gondwana Research, 2(4): 591 Li, Z. X., Li, X. H., Kinny, P. D., et al., 1999. The Breakup of Rodinia: Did It Start with a Mantle Plume beneath South China? Earth and Planetary Science Letters, 173(3): 171–181 Li, Z. X., Li, X. H., Kinny, P. D., et al., 2003. Geochronology of Neoproterozoic Syn-rift Magmatism in the Yangtze Craton, South China and Correlations with Other Continents: Evidence for a Mantle Superplume that Broke up Rodinia. Precambrian Research, 122(1–4): 85–109 Li, Z. X., Li, X. H., Zhou, H. W., et al., 2002. Grenvillian Continental Collision in South China: New SHRIMP U-Pb Zircon Results and Implications for the Configuration of Rodinia. Geology, 30(2): 163–166 Li, Z. X., Zhang, L., Powell, C. M., 1995. South China in Rodinia: Part of the Missing Link between Australia-East-Antarctica and Laurentia. Geology, 23: 407–410 Ling, W. L., Gao, S., Zhang, B. R., et al., 2003. Neoproterozoic Tectonic Evolution of the Northwestern Yangtze Craton, South China: Implications for Amalgamation and Break-up of the Rodinia Supercontinent. Precambrian Research, 122(1–4): 111–140 Ling, W. L., Gao, S., Cheng, J. P., et al., 2006. Neoproterozoic Magmatic Events within the Yangtze Continental Interior and along Its Northern Margin and Their Tectonic Implication: Constraint from the ELA-ICPMS U-Pb Geochronology of Zircons from the Mangling and Hannan Complexes. Acta Petrologica Sinica, 22(2): 387–396 (in Chinese with English Abstract) Lo’pez, S., Castro, A., 2001. Determination of the Fluid-Absent Solidus and Supersolidus Phase Relationships of MORB-Derived Amphibolites in the Range 4–14 kbar. Am. Mineral., 86: 1396–1403 Lo’pez, S., Castro, A., Garcia-Casco, A., 2005. Production of Granodiorite Melt by Interaction between Hydrous Mafic Magma and Tonalitic Crust: Experimental Constraints and Implications for the Generation of Archaean TTG Complexes. Lithos, 79(1–2): 229–250 Ludwig, K. R., 2003. ISOPLOT 3.0: A Geochronological Toolkit for Microsoft Excel, 4. Berkeley Geochronology Center Special Publication Martin, H., Smithies, R. H., Rapp, R., et al., 2005. An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and Sanukitoid: Relationships and Some Implications for Crustal Evolution. Lithos, 79(1–2): 1–24 Muir, R. J., Weaver, S. D., Bradshaw, J. D., et al., 1995. The Cretaceous Separation Point Batholith, New Zealand: Granitoid Magmas Formed by Melting of Mafic Lithosphere. Journal of the Geological Society of London, 152(Part 4): 689–701 O’Connor, J. T., 1965. A Classification for Quartz-Rich Igneous Rocks Based on Feldspar Ratios. U.S. Geol. Surv. Prof. Pap., 525-B: 79–84 Peacock, S. M., Rushmer, T., Thompson, A. B., 1994. Partial Melting of Subducting Oceanic Crust. Earth and Planetary Science Letters, 121(1–2): 227–244 Petford, N., Atherton, M., 1996. Na-Rich Partial Melts from Newly Underplated Basaltic Crust: The Cordillera Blanca Batholith, Peru. J.Petrol., 37(6): 1491–1521 Prouteau, G., Maury, R. C., Pubellier, M., et al., 2001. Post-Collisional Magmatism from NW Borneo: Evidence for Melting of an Oceanic Crust Deliver within the Upper Mantle. Bulletin de la Societe Geologique de France, 172(3): 319–332 Prouteau, G., Scaillet, B., 2003. Experimental Constraints on the Origin of the 1991 Pinatubo Dacite. J. Petrol., 44(12): 2203–2241 Rapp, R. P., Shimizu, N., Norman, M. D., et al., 1999. Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge: Experimental Constraints at 3.8 GPa. Chemical Geology, 160(4): 335–356 Rapp, R. P., Watson, E. B., 1995. Dehydration Melting of Metabasalt at 8–32 kbar: Implications for Continental Growth and Crust Mantle Recycling. J. Petrol., 36(4): 891–931 Sajona, F. G., Maury, R. C., Pubellier, M., et al., 2000. Magmatic Source Enrichment by Slab-Derived Melts in a Young Post-Collision Setting, Central Mindanao (Philippines). Lithos, 54(3–4): 173–206 Scherer, E., Munker, C., Mezger, K., 2001. Calibration of the Lutetium-Hafnium Clock. Science, 293(5530): 683–687 Smithies, R. H., 2000. The Archaean Tonalite-Trondhjemite-Granodiorite (TTG) Series is not an Analogue of Cenozoic Adakite. Earth and Planetary Science Letters, 182(1): 115–125 Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. In: Sunders, A. D., Norry, M. J., eds., Magmatism in the Ocean Basins.Geological Society of London Special Publication, 42: 313–345 Takahashi, Y., Kagashima, S. I., Mikoshiba, M. U., 2005. Geochemistry of Adakitic Quartz Diorite in the Yamizo Mountains, Central Japan: Implications for Early Cretaceous Adakitic Magmatism in the Inner Zone of Southwest Japan. Island Arc, 14(2): 150–164 Vervoort, J. D., Blichert-Toft, J., 1999. Evolution of the Depleted Mantle: Hf Isotope Evidence from Juvenile Rocks through Time. Geochimica et Cosmochimica Acta, 63(3–4): 533–556 Wang, J., Li, Z. X., 2003. History of Neoproterozoic Rift Basins in South China: Implications for Rodinia Break-up. Precambrian Research, 122(1–4): 141–158 Wang, Q., McDermott, F., Xu, J. F., et al., 2005. Cenozoic K-Rich Adakitic Volcanic Rocks in the Hohxil Area, Northern Tibet: Lower-Crustal Melting in an Intracontinental Setting. Geology, 33(6): 465–468 Wang, Q., Xu, J. F., Jian, P., et al., 2006. Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting, Dexing, South China: Implications for the Genesis of Porphyry Copper Mineralization. Journal of Petrology, 47(1): 119–144 Wang, X. L., Zhou, J. C., Qiu, J. S., et al., 2004a. Comment on “Neoproterozoic Granitoids in South China: Crustal Melting above a Mantle Plume at ca. 825 Ma?” by Xian-Hua Li et al. (Precambrian Research, 122: 45–83). Precambrian Research, 132(4): 401–403 Wang, X. L., Zhou, J. C., Qiu, J. S., et al., 2004b. Geochemistry of the Meso- to Neoproterozoic Basic-Acid Rocks from Hunan Province, South China: Implications for the Evolution of the Western Jiangnan Orogen. Precambrian Research, 135(1–2): 79–103 Wang, X. L., Zhou, J. C., Qiu, J. S., et al., 2003. Geochemistry of the Meso-Neoproterozoic Volcanic-Intrusive Rocks from Hunan Province and Its Petrogenic Significances. Acta Petrologica Sinica, 19(1): 49–60 (in Chinese with English Abstract) White, A. J. R., Chappell, B. W., 1977. Ultrametamorphism and Granitoid Genesis. Tectonophysics, 43(1–2): 7–22 Winther, K. T., 1996. An Experimentally Based Model for the Origin of Tonalitic and Trondhjemitic Melts. Chem. Geol., 127(1–3): 43–59 Wu, F. Y., Yang, Y. H., Xie, L. W., et al., 2006. Hf Isotopic Compositions of the Standard Zircons and Baddeleyites Used in U-Pb Geochronology. Chem. Geol., 234(1–2): 105–126 Wu, R. X., Zheng, Y. F., Wu, Y. B., et al., 2006. Reworking of Juvenile Crust: Element and Isotope Evidence from Neoproterozoic Granodiorite in South China. Precambrian Research, 146(3–4): 179–212 Xiao, L., Zhang, H. F., Ni, P. Z., et al., 2007. LA-ICP-MS U-Pb Zircon Geochronology of Early Neoproterozoic Mafic-Intermediate Intrusions from NW Margin of the Yangtze Block, South China: Implication for Tectonic Evolution. Precambrian Research, 154(3–4): 221–235 Xu, J. F., Shinjo, R., Defant, M. J., et al., 2002. Origin of Mesozoic Adakitic Intrusive Rocks in the Ningzhen Area of East China: Partial Melting of Delaminated Lower Continental Crust? Geology, 30(12): 1111–1114 Yan, D. P., Zhou, M. F., Wang, C. Y., et al., 2006. Structural and Geochronological Constraints on the Tectonic Evolution of the Dulong-Song Chay Tectonic Dome in Yunnan Province, SW China. Journal of Asian Earth Sciences, 28(4–6): 332–353 Yan, Z., 1985. Granite of Shaanxi Province. Xi’an Jiaotong University Press, Xi’an. 59–63 (in Chinese) Yuan, H. L., Gao, S., Liu, X. M., et al., 2004. Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Geostandards and Geoanalytical Research, 28(3): 353–370 Zhang, Z. Q., Zhang, G. W., Tang, S. H., et al., 2001. Geochronology of the Hannan Intrusive Complex to Adjoin the Qinling Orogen and Its Rapid Cooling Reason. Chinese Science Bulletin, 46(8): 685–689 Zheng, Y. F., Wu, Y. B., Chen, F. K., et al., 2004. Zircon U-Pb and Oxygen Isotope Evidence for a Large-Scale 18O Depletion Event in Igneous Rocks during the Neoproterozoic. Geochimica et Cosmochimica Acta, 68(20): 4145–4165 Zheng, Y. F., Wu, Y. B., Gong, B., et al., 2007a. Tectonic Driving of Neoproterozoic Glaciations: Evidence from Extreme Oxygen Isotope Signature of Meteoric Water in Granite. Earth and Planetary Science Letters, 256(1–2): 196–210 Zheng, Y. F., Zhang, S. B., 2007. Formation and Evolution of Precambrian Continental Crust in South China. Chinese Science Bulletin, 52(1): 1–12 Zheng, Y. F., Zhang, S. B., Zhao, Z. F., et al., 2007b. Contrasting Zircon Hf and O Isotopes in the Two Episodes of Neoproterozoic Granitoids in South China: Implications for Growth and Reworking of Continental Crust. Lithos, 96(1–2): 127–150 Zhou, J. C., Wang, X. L., Qiu, J. S., et al., 2003. Lithogeochemistry of Meso- and Neoproterozoic Mafic-Ultramafic Rocks from Northern Guangxi. Acta Petrologica Sinica, 19(1): 9–18 (in Chinese with English Abstract) Zhou, J. C., Wang, X. L., Qiu, J. S., et al., 2004. Geochemistry of Meso- and Neoproterozoic Mafic-Ultramafic Rocks from Northern Guangxi, China: Arc or Plume Magmatism? Geochemical Journal, 38(2): 139–152 Zhou, M. F., Kennedy, A. K., Sun, M., et al., 2002a. Neoproterozoic Arc-Related Mafic Intrusions along the Northern Margin of South China: Implications for the Accretion of Rodinia. Journal of Geology, 110(5): 611–618 Zhou, M. F., Ma, Y., Yan, D. P., et al., 2006a. The Yanbian Terrane (Southern Sichuan Province, SW China): A Neoproterozoic Arc Assemblage in the Western Margin of the Yangtze Block. Precambrian Research, 144(1–2): 19–38 Zhou, M. F., Yan, D. P., Kennedy, A. K., et al., 2002b. SHRIMP U-Pb Zircon Geochronological and Geochemical Evidence for Neoproterozoic Arc-Magmatism along the Western Margin of the Yangtze Block, South China. Earth and Planetary Science Letters, 196(1–2): 51–67 Zhou, M. F., Yan, D. P., Wang, C. L., et al., 2006b. Subduction-Related Origin of the 750 Ma Xuelongbao Adakitic Complex (Sichuan Province, China): Implications for the Tectonic Setting of the Giant Neoproterozoic Magmatic Event in South China. Earth and Planetary Science Letters, 248(1–2): 286–300