The universality of Hughes-free division rings

Selecta Mathematica - Tập 27 - Trang 1-33 - 2021
Andrei Jaikin-Zapirain1,2
1Departamento de Matemáticas, Universidad Autónoma de Madrid, Madrid, Spain
2Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM), Madrid, Spain

Tóm tắt

Let $$E*G$$ be a crossed product of a division ring E and a locally indicable group G. Hughes showed that up to $$E*G$$ -isomorphism, there exists at most one Hughes-free division $$E*G$$ -ring. However, the existence of a Hughes-free division $$E*G$$ -ring $${\mathcal {D}}_{E*G}$$ for an arbitrary locally indicable group G is still an open question. Nevertheless, $${\mathcal {D}}_{E*G}$$ exists, for example, if G is amenable or G is bi-orderable. In this paper we study, whether $${\mathcal {D}}_{E*G}$$ is the universal division ring of fractions in some of these cases. In particular, we show that if G is a residually-(locally indicable and amenable) group, then there exists $${\mathcal {D}}_{E[G]}$$ and it is universal. In Appendix we give a description of $${\mathcal {D}}_{E[G]}$$ when G is a RFRS group.

Tài liệu tham khảo

Cohn, P.M.: Theory of General Division Rings. Encyclopedia of Mathematics and its Applications, vol. 57. Cambridge University Press, Cambridge (1995)

Deroin, B., Navas, A., Rivas, C.: Groups, orders, and dynamics. arXiv:1408.5805

Malcev, A.I.: On the embedding of group algebras in division algebras. Doklady Akad. Nauk SSSR (N.S.) 60, 1499–1501 (1948). (Russian)

Malcolmson, P.: Determining homomorphisms to division rings. J. Algebra 64(2), 399–413 (1980)

Sánchez, J.: On division rings and tilting modules, Ph. D. Thesis, Universitat Autónoma de Barcelona (2008), www.tdx.cat/bitstream/handle/10803/3107/jss1de1.pdf