The base change in the Atiyah and the Lück approximation conjectures

Geometric and Functional Analysis - Tập 29 - Trang 464-538 - 2019
Andrei Jaikin-Zapirain1
1Departamento de Matemáticas, Universidad Autónoma de Madrid and Instituto de Ciencias Matemáticas, CSIC-UAM-UC3M-UCM, Madrid, Spain

Tóm tắt

Let F be a free finitely generated group and $${A \in {\rm Mat}_{n \times m}(\mathbb{C}[F])}$$ . For each quotient G = F/N of F we can define a von Neumann rank function rkG(A) associated with the l2-operator l2(G)n → l2(G)m induced by right multiplication by A. For example, in the case where G is finite, $${{\rm rk}_G(A)=\frac{{\rm rk}_{\mathbb{C}}({{\bar{A}}})}{|G|}}$$ is the normalized rank of the matrix $${{{\bar{A}}} \in {\rm Mat}_{n \times m}(\mathbb{C}[G])}$$ obtained by reducing the coefficients of A modulo N. One of the variations of the Lück approximation conjecture claims that the function $${N\mapsto {\rm rk}_{F/N}(A)}$$ is continuous in the space of marked groups. The strong Atiyah conjecture predicts that if the least common multiple lcm(G) of the orders of finite subgroups of G is finite, then $${{\rm rk}_G(A) \in \frac{1}{lcm (G)}\mathbb{Z}}$$ . In our first result we prove the sofic Lück approximation conjecture. In particular, we show that the function $${N \mapsto {\rm rk}_{F/N}(A)}$$ is continuous in the space of sofic marked groups. Among other consequences we obtain that a strong version of the algebraic eigenvalue conjecture, the center conjecture and the independence conjecture hold for sofic groups. In our second result we apply the sofic Lück approximation and we show that the strong Atiyah conjecture holds for groups from a class $${{\mathcal{D}}}$$ , virtually compact special groups, Artin’s braid groups and torsion-free p-adic analytic pro-p groups.

Tài liệu tham khảo

Ara, P., Goodearl, K.R.: The realization problem for some wild monoids and the Atiyah problem. Trans. Amer. Math. Soc 369, 5665–5710 (2017) M. F. Atiyah, Elliptic operators, discrete groups and von Neumann algebras. Colloque ``Analyse et Topologie" en l'Honneur de Henri Cartan (Orsay, 1974), pp. 43–72. Asterisque, No. 32–33, Soc. Math. France, Paris (1976) T. Austin, Rational group ring elements with kernels having irrational dimension, Proc. Lond. Math. Soc. (3)107 (2013), 1424–1448 S. K. Berberian, Baer *-rings. Die Grundlehren der mathematischen Wissenschaften, Band 195. Springer-Verlag, New York-Berlin (1972) Berberian, S.K.: The maximal ring of quotients of a finite von Neumann algebra. Rocky Mountain J. Math. 12, 149–164 (1982) Collingwood, D.H., McGovern, W.M.: Nilpotent orbits in semisimple Lie algebras. Van Nostrand Reinhold Mathematics Series. Van Nostrand Reinhold Co., New York (1993) P. M. Cohn, Skew fields. Theory of general division rings. Encyclopedia of Mathematics and its Applications, 57. Cambridge University Press, Cambridge, (1995) Dodziuk, J.: de Rham-Hodge theory for \(L^{2}\)-cohomology of infinite coverings. Topology 16, 157–165 (1977) Dodziuk, J., Linnell, P., Mathai, V., Schick, T., Yates, S.: Approximating \(L^2\)-invariants and the Atiyah conjecture. Comm. Pure Appl. Math. 56, 839–873 (2003) Elek, G.: The strong approximation conjecture holds for amenable groups. J. Funct. Anal. 239, 345–355 (2006) Elek, G.: Connes embeddings and von Neumann regular closures of amenable group algebras. Trans. Amer. Math. Soc. 365, 3019–3039 (2013) Elek, G.: Infinite dimensional representations of finite dimensional algebras and amenability. Math. Ann. 369, 397–439 (2017) G. Elek and E. Szabó, Hyperlinearity, essentially free actions and \(L^2\)-invariants. The sofic property, Math. Ann. 332 (2005), 421–441 D. Farkas and P. Linnell, Congruence subgroups and the Atiyah conjecture, Groups, rings and algebras, 89–102, Contemp. Math., 420, Amer. Math. Soc., Providence, RI, (2006) Grabowski, Ł.: On Turing dynamical systems and the Atiyah problem. Invent. Math. 198, 27–69 (2014) Grabowski, Ł.: Irrational \(l^2\)-invariants arising from the lamplighter group. Groups Geom. Dyn. 10, 795–817 (2016) Goodearl, K.R.: von Neumann regular rings, 2nd edn. Robert E. Krieger Publishing Co., Inc, Malabar, FL (1991) K. R. Goodearl and R. B. Warfield, An introduction to noncommutative Noetherian rings. Second edition. London Mathematical Society Student Texts, 61. Cambridge University Press, Cambridge, (2004) B. Hayes and A. Sale, Metric approximations of wreath products, to appear in Annales de l'Institut Fourier R. Hartshorne, Algebraic geometry. Graduate Texts in Mathematics, No. 52. Springer-Verlag, New York-Heidelberg, (1977) Jaikin-Zapirain, A.: Modules over crossed products. J. Algebra 215, 114–134 (1999) Jaikin-Zapirain, A.: Approximation by subgroups of finite index and the Hanna Neumann conjecture. Duke Math. J. 166, 1955–1987 (2017) A. Jaikin-Zapirain, \(L^2\)-Betti numbers and their analogues in positive characteristic, Groups St Andrews 2017 in Birmingham, 346–406, London Mathematical Society Lecture Note Series 455, Cambridge University Press, Cambridge, (2019) Lehner, F., Wagner, S.: Free lamplighter groups and a question of Atiyah. Amer. J. Math. 135, 835–849 (2013) Linnell, P.: Division rings and group von Neumann algebras. Forum Math. 5, 561–576 (1993) Linnell, P., Schick, T.: Finite group extensions and the Atiyah conjecture. J. Amer. Math. Soc. 20, 1003–1051 (2007) Linnell, P., Schick, T.: The Atiyah conjecture and Artinian rings. Pure Appl. Math. Q. 8, 313–327 (2012) Liu, Z.: A double commutant theorem for Murray-von Neumann algebras. PNAS 20, 7676–7681 (2012) Lück, W.: Approximating \(L^2\)-invariants by their finite-dimensional analogues. Geom. Funct. Anal. 4, 455–481 (1994) W. Lück, \(L^2\)-invariants: theory and applications to geometry and \(K\)-theory. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics 44. Springer-Verlag, Berlin, (2002) P. Malcolmson, Determining homomorphisms to skew fields. J. Algebra (2)64 (1980), 399–413 J. C. McConnell and J. C.Robson, Noncommutative Noetherian rings. With the cooperation of L. W. Small. Revised edition. Graduate Studies in Mathematics, 30. American Mathematical Society, Providence, RI, (2001) Moody, J.: Brauer induction for \(G_0\) of certain infinite groups. J. Algebra 122, 1–14 (1989) Narkiewicz, W.: Elementary and analytic theory of algebraic numbers, 3rd edn. Springer Monographs in Mathematics. Springer-Verlag, Berlin (2004) Pape, D.: A short proof of the approximation conjecture for amenable groups. J. Funct. Anal. 255, 1102–1106 (2008) Pichot, M., Schick, T., Zuk, A.: Closed manifolds with transcendental \(L^2\)-Betti numbers. J. London Math. Soc. 92, 371–392 (2015) H. Reich, Group von Neumann Algebras and Related Algebras, Ph. D. Thesis, Göttingen 1998, http://www.mi.fu-berlin.de/math/groups/top/members/publ/diss.pdf Rowen, L., Saltman, D.: Tensor products of division algebras and fields. J. Algebra 394, 296–309 (2013) Schick, T., Integrality of \(L^2\)-Betti numbers. Math. Ann. 317, : 727–750, Erratum. Math. Ann. 322(2002), 421–422 (2000) A. Schofield, Representation of rings over skew fields. London Mathematical Society Lecture Note Series, 92. Cambridge University Press, Cambridge, (1985) Schreve, K.: The strong Atiyah conjecture for virtually cocompact special groups. Math. Ann. 359, 629–636 (2014) Stenström, B.: Rings of quotients, Die Grundlehren der Mathematischen Wissenschaften, vol. 217. An introduction to methods of ring theory. Springer-Verlag, New York-Heidelberg (1975) N. G. Szoke, Sofic groups, Msc. Thesis, Eötvös Loránd University, 2014, www.cs.elte.hu/blobs/diplomamunkak/msc_mat/2014/szoke_nora_gabriella.pdf Thom, A.: Sofic groups and Diophantine approximation. Comm. Pure Appl. Math. 61, 1155–1171 (2008) S. Virili, Crawley-Boewey's extension of invariants in the non-discrete case, preprint (2017) S. Virili, Algebraic entropy of amenable group actions, arXiv:1410.8306v2, preprint 2017