Tetraether membrane lipid distributions in water-column particulate matter and sediments: a study of 47 European lakes along a north–south transect

Springer Science and Business Media LLC - Tập 41 - Trang 523-540 - 2008
Cornelia Iulia Blaga1, Gert-Jan Reichart1, Oliver Heiri2, Jaap S. Sinninghe Damsté1,3
1Faculty of Geosciences, Organic Geochemistry, Utrecht University, Utrecht, The Netherlands
2Institute of Environmental Biology, Section Palaeoecology, Utrecht University, Utrecht, The Netherlands
3Royal Netherlands Institute for Sea Research (NIOZ), Den Burg, The Netherlands

Tóm tắt

We studied the distribution of glycerol dialkyl glycerol tetraethers (GDGTs) in water-column particulate matter and the top 5 cm of sediment from 47 lakes along a transect from southern Italy to the northern part of Scandinavia. Our objective was to investigate the biological sources and potential palaeoenvironmental applications of GDGTs in lacustrine sediments. Both archaea-derived isoprenoid and bacteria-derived branched GDGTs, produced by yet unknown soil bacteria, were identified in all lake sediments. GDGT distributions varied substantially. Crenarchaeotal GDGTs, including the characteristic GDGT crenarchaeol, were found in varying relative concentrations, and were more dominant in lakes from the Alps and some of the lakes from the more southern part of the latitudinal transect. In some lakes, we observed high amounts of the GDGT with no cyclopentane moieties relative to crenarchaeol. As methanogenic Euryarchaeota are known to biosynthesise this GDGT predominantly, these Archaea, rather than Crenarchaeota, may be its dominant biological source. In most of the lakes, high amounts of soil-bacteria-derived, branched GDGTs (>40% of total GDGTs) indicated a substantial contribution from soil erosion. Branched GDGTs dominated, especially in the northern lakes, possibly related to high soil-erosion rates. In many of the lakes, soil input affects the distribution of isoprenoidal GDGTs and prevents the reliable application of the TEX86 temperature proxy for lake water temperature, which is based on in situ crenarchaeotal GDGTs production. In 9 out of the 47 lakes studied, the TEX86 temperature proxy could be used reliably. When we compared the TEX86 correlation with annual and winter lake-surface temperature, respectively, the relationship between TEX86 and winter temperature was slightly stronger. This may indicate the season in which these GDGT-producing organisms have their peak production.

Tài liệu tham khảo

Blass A, Anselmetti FS, Grosjean M, Sturm M (2005) The last 1300 years of environmental history recorded in the sediments of Lake Sils (Engadine, Switzerland). Ecologae Geol Helv 98:319–332. doi:10.1007/s00015-005-1166-5

Blumenberg M, Seifert R, Reitner J, Pape T, Michaelis W (2004) Membrane lipid patterns typify distinct anaerobic methanotrophic consortia. Proc Natl Acad Sci USA 101:11111–11116. doi:10.1073/pnas.0401188101

Bührer H, Ambühl H (2001) Lake Lucerne, Switzerland, a long term study of 1961–1992. Aquat Sci 63:432–456. doi:10.1007/s00027-001-8043-8

Hou J, Huang Y, Oswald WW, Foster DR, Shuman B (2007) Centennial-scale compound-specific hydrogen isotope record of Late Pleistocene - Holocene climate transition from southern New England. Geophs Res Let 34. doi:10.1029/2007GL030303

Huguet C, Kim JH, Sinninghe Damsté JS, Schouten S (2006) Reconstruction of sea surface temperature variations in the Arabian Sea over the last 23 kyr using organic proxies (TEX86 and UK37′). Paleoceanog 21:PA3003. doi:10.1029/2005PA001215

Jacquet S, Briand JF, Leboulanger C, Avois-Jacquet C, Oberhaus L, Tassin B et al (2005) The proliferation of the toxic cyanobacterium Planktothrix rubescens following restoration of the largest natural French lake (Lac du Bourget). Harmful Algae 4:651–672. doi:10.1016/j.hal.2003.12.006

Karner MB, DeLong EF, Karl DM (2001) Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409:507–510. doi:10.1038/35054051

Keough BP, Schmidt TM, Hicks RE (2003) Archaeal nucleic acids in Picoplankton from Great Lakes on three continents. Microb Ecol 46:238–248. doi:10.1007/s00248-003-1003-1

Kim JH, Schouten S, Buscail R, Ludwig W, Bonnin J, Sinninghe Damsté JS, et al (2006) Origin and distribution of terrestrial organic matter in the NW Mediterranean (Gulf of Lions): application of the newly developed BIT index. Geochem Geophys Geosyst 7, Q11017. doi:10.1029/2006GC001306

Koga Y, Morii H, Akagawa-Matsushita M, Ohga M (1998b) Correlation of polar lipid composition with 16S rRNA phylogeny in methanogens. Further analysis of lipid component parts. Biosci Biotechnol Biochem 62:230–236. doi:10.1271/bbb.62.230

Leininger S, Urich T, Schloter M, Schwark L, Qi L, Nicol GW et al (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806–809. doi:10.1038/nature04983

Liu Z, Henderson ACG, Huang Y (2006) Alkenone-based reconstruction of late Holocene surface temperature and salinity changes in Lake Qinghai, China. Geophys Res Lett 33. doi:10.1029/2006GL026151

Messineo V, Mattei D, Melchiorre S, Salvatore G, Bogialli S, Salzano R, Mazza R, Capelli G, Bruno M (2006) Microcystin diversity in a Planktothrix rubescens population from Lake Albano (Central Italy). Toxicon 48:160–174. doi:10.1016/j.toxicon.2006.04.006

Ocevski BT, Allen HL (1977) Limnological studies in a large, deep, Oligotrophic Lake (Lake Ohrid, Yugoslavia). Arch Hydrobiol 79:429–440

Pancost RD, Hopmans EC, Sinninghe Damsté JS, the MEDINAUT Shipboard Scientific Party (2001) Archaeal lipids in Mediterranean cold seeps: molecular proxies for anaerobic methane oxidation. Geochim Cosmochim Acta 65:1611–1627. doi:10.1016/S0016-7037(00)00562-7

Pearson A, Huang Z, Ingalls AE, Romanek CS, Wiegel J, Freeman KH et al (2004) Nonmarine crenarchaeol in Nevada hot springs. Appl Environ Microbiol 70:5229–5237. doi:10.1128/AEM.70.9.5229-5237.2004

Powers LA, Werne JP, Johnson TC, Hopmans EC, Sinninghe Damsté JS, Schouten S (2004) Crenarchaeotal membrane lipids in lake sediments; a new paleotemperature proxy for continental paleoclimate reconstruction? Geology 32:613–616. doi:10.1130/G20434.1

Schouten S, Hoefs MJL, Koopmans MP, Bosch H-J, Sinninghe Damsté JS (1998) Structural identification, occurrence and fate of archaeal ether-bound acyclic and cyclic biphytanes and corresponding diols in sediments. Org Geochem 29:1305–1319. doi:10.1016/S0146-6380(98)00131-4

Schouten S, Hopmans EC, Pancost RD, Sinninghe Damsté JS (2000) Widespread occurrence of structurally diverse tetraether membrane lipids: evidence for the ubiquitous presence of low-temperature relatives of hyperthermophiles. Proc Natl Acad Sci USA 97:14421–14426. doi:10.1073/pnas.97.26.14421

Schouten S, Hopmans EC, Schefuß E, Sinninghe Damsté JS (2002) Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures? Earth Planet Sci Lett 204:265–274. doi:10.1016/S0012-821X(02)00979-2

Schouten S, Hopmans EC, Kuypers MMM, Breugel Y, Forster A, Sinninghe Damsté JS (2003) Extreme high sea water temperatures at low latitudes during the middle Cretaceous as revealed by archaeal membrane lipids. Geology 31:1069–1072. doi:10.1130/G19876.1

Schouten S, Huguet C, Hopmans EC, Sinninghe Damsté JS (2007a) Improved analytical methodology of the TEX86 paleothermometry by high performance liquid chromatography /atmospheric pressure chemical ionization-mass spectrometry. Anal Chem 79:2940–2944. doi:10.1021/ac062339v

Schouten S, van der Meer MTJ, Hopmans EC, Rijpstra WIC, Reysenbach AL, Ward DM et al (2007b) Archaeal and bacterial glycerol dialkyl glycerol tetraether lipids in hot springs of Yellowstone national park. Appl Environ Microbiol 73:6181–6191. doi:10.1128/AEM.00630-07

Schouten S, Hopmans EC, Bass M, Boumann H, Standfest S, Könneke M, Stahl DA, Sinninghe Damsté JS (2008a) Intact membrane lipids of Candidatus Nitrosopumilus maritimus a cultivated representative of the cosmopolitan mesophilic group I crenarchaeota. Appl Environ Microbiol 74:2433–2440

Sinninghe Damsté JS, Hopmans EC, Pancost RD, Schouten S, Geenevasen JAJ (2000) Newly discovered non-isoprenoid glycerol dialkyl glycerol tetraether lipids in sediments. Chem Commun (Camb) 1683–1684. doi:10.1039/b004517i

Sinninghe Damsté JS, Hopmans EC, Schouten S, van Duin ACT, Geenevasen JAJ (2002) Crenarchaeol: the characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic crenarchaeota. J Lipid Res 43:1641–1651. doi:10.1194/jlr.M200148-JLR200

Sluijs A, Schouten S, Pagani M, Woltering M, Brinkhuis H, Sinninghe Damsté JS et al (2006) Subtropical Arctic Ocean temperatures during the Palaeocene Eocene thermal maximum. Nature 441:610–613. doi:10.1038/nature04668

Weijers JWH, Schouten S, Hopmans EC, Geenevasen JAJ, David ORP, Coleman JM et al (2006a) Membrane lipids of mesophilic anaerobic bacteria thriving in peats have typical archaeal traits. Environ Microbiol 8:648–657. doi:10.1111/j.1462-2920.2005.00941.x

Wuchter C, Schouten S, Coolen MJL, Sinninghe Damsté JS (2004) Temperature-dependent variation in the distribution of tetraether membrane lipids of marine Crenarchaeota: implications for TEX86 paleothermometry. Paleoceanography 19:PA4028. doi:10.1029/2004PA001041

Wuchter C, Schouten S, Wakeham SG, Sinninghe Damsté JS (2005) Temporal and spatial variation in tetraether membrane lipids of marine Crenarchaeota in particulate organic matter: Implications for TEX86 paleothermometry. Paleoceanography 20:PA3013. doi:10.1029/2004PA001110

Wuchter C, Abbas B, Coolen MJL, Herfort L, van Bleijswijk J, Timmers P et al (2006) Archaeal nitrification in the ocean. Proc Natl Acad Sci USA 103:12317–12322. doi:10.1073/pnas.0600756103

Zhang CL, Pearson A, Li YL, Mills G, Wiegel J (2006) Thermophilic temperature optimum for crenarchaeol synthesis and its implication for archaeal evolution. Appl Environ Microbiol 72:4419–4422. doi:10.1128/AEM.00191-06