Xiang Wu1, Zhengxin Li1, Xinjie Dai1, Yan Li1, Jin-Rong Zhong1, Jinlin Tan1, Cui-Hong Lu1, Yue-Fei Zhang1
1School of Chemistry and Chemical Engineering, Changsha University of Science & Technology, Changsha, China
Tóm tắt
The development of high-performance and low-cost composite nucleating agents has become a pioneering point in expanding the application of isotactic polypropylene (iPP). To this end, this article used a physical blending method to mix nucleating agent organic phosphate salt (LPN-9081) with inorganic fillers such as wollastonite and talc powder. Change the ratio of nucleated mineral-reinforced composition LPN-9081/wollastonite (L/WO) and LPN-9081/talc powder (L/Tac) to study their effects on the crystallization, melting behavior, and mechanical properties of iPP. And a preliminary exploration was conducted on its mechanism. The results suggest that the nucleated mineral-reinforced composition more significantly enhance the crystallization temperature, increasing it by up to 10 °C. Furthermore, it was observed that the mechanical properties of iPP were significantly improved via the synergistic effect of LPN-9081 and the inorganic fillers. In the iPP/L/WO system, the addition of the composite nucleating agent improved rigidity by 146% while maintaining toughness. Similarly, compared with iPP system, the iPP/L/Tac system has improved its rigidity by 107% and toughness by 50%. Using the nucleated mineral-reinforced compositions mentioned above can reduce industrial expenses, while increases the rigidity and toughness of iPP, expanding its potential of applications.