Isothermal crystallization of polypropylene/surface modified silica nanocomposites

Science in China Series B: Chemistry - Tập 59 - Trang 1283-1290 - 2016
Hanying Tang1,2, Quanxiao Dong3, Peng Liu1, Yanfen Ding1, Feng Wang1, Chong Gao2, Shimin Zhang1, Mingshu Yang1
1Beijing National Laboratory for Molecular Science; CAS Key Laboratory of Engineering Plastics; Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
2University of Chinese Academy of Sciences, Beijing, China
3State Key Laboratory of Track Technology of High-Speed Railway, China Academy of Railway Sciences, Beijing, China

Tóm tắt

In the present work, 3-methacryloxypropyltrimethoxy-silane silanized silica (SiO2-WD70) and 9, 10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide immobilized silica (SiO2-WD70-DOPO) nanoparticles were prepared. Silica, SiO2-WD70 and SiO2-WD70-DOPO were incorporated into polypropylene (PP) by melt compounding. Differential scanning calorimetry (DSC), X-ray diffraction (XRD) and polarized optical microscopy (POM) were employed to investigate the isothermal crystallization behavior of PP and PP/silica composites. The kinetic constant (k n ), and half crystallization time (t 1/2) were calculated by Avrami equation, while the surface free energy of folding was calculated by Lauritzen-Hoffman theory. The increased k n , decreased t 1/2 and the surface free energy (σ e) in the order of PP, PP/SiO2, PP/SiO2-WD70 and PP/SiO2-WD70-DOPO nanocomposites were attributed to the surface modification of silica. XRD indicated that SiO2-WD70-DOPO addition had no effect on PP crystal structure but accelerated the crystallization rate. POM determined that SiO2-WD70-DOPO addition promoted the nucleation of PP by inducing a higher nucleation density during isothermal conditions. The surface modified nanoparticle SiO2-WD70-DOPO might find possible application as a new type of inorganic nano-sized nucleation agent for PP.

Tài liệu tham khảo

Fukuyama Y, Kawai T, Kuroda S, Toyonaga M, Taniike T, Terano M. J Therm Anal Calorim, 2013, 113: 1511–1519 Wu C, Zhang M, Rong M, Friedrich K. Compos Sci Tech, 2005, 65: 635–645 Lu P. China Plastics Industry, 2010, 38: 25–28 Qian J, He P, Nie K. J Appl Polym Sci, 2004, 91: 1013–1019 Durmus A, Kasgoz A, Ercan N, Akin D, Sanli S. Polymer, 2012, 53: 5347–5357 Li J, Zhou C, Gang W. Polym Test, 2003, 22: 217–223 Ning N, Yin Q, Luo F, Zhang Q, Du R, Fu Q. Polymer, 2007, 48: 7374–7384 Razavi-Nouri M, Ghorbanzadeh-Ahangari M, Fereidoon A, Jahanshahi M. Polym Test, 2009, 28: 46–52 Zhou Z, Wang S, Lu L, Zhang Y, Zhang Y. J Polym Sci B Polym Phys, 2007, 45: 1616–1624 Naffakh M, Martín Z, Marco C, Gómez MA, Jiménez I. Thermochim Acta, 2008, 472: 11–16 Yin J, Wang S, Zhang Y, Zhang Y. J Polym Sci B Polym Phys, 2005, 43: 1914–1923 Jiang HB, Zhang XH, Qiao JL. Sci China Chem, 2012, 55: 1140–1147 Rong MZ, Zhang MQ, Zheng YX, Zeng HM, Walter R, Friedrich K. Polymer, 2001, 42: 167–183 Dong Q, Ding Y, Wen B, Wang F, Dong H, Zhang S, Wang T, Yang M. Colloid Polym Sci, 2012, 290: 1371–1380 Rong MZ, Zhang MQ, Pan SL, Friedrich K. Acta Polym Sin, 2004, 2: 184–190 Pipatchanchai T, Srikulkit K. J Sol-Gel Sci Technol, 2007, 44: 119–123 Iiskola EI, Timonen S, Pakkanen TT, Härkki O, Lehmus P, Seppälä JV. Macromolecules, 1997, 30: 2853–2859 Jin L, Horgan A, Levicky R. Langmuir, 2003, 19: 6968–6975 Ke YC, Wu TB, Xia YF. Polymer, 2007, 48: 3324–3336 He W, Wu D, Li J, Zhang K, Xiang Y, Long L, Qin S, Yu J, Zhang Q. Bull Korean Chem Soc, 2013, 34: 2747–2752 Gun'ko VM, Voronin EF, Zarko VI, Pakhlov EM, Chuiko AA. J Adhes Sci Tech, 1997, 11: 627–653 Kruk M, Asefa T, Coombs N, Jaroniec M, Ozin GA. J Mater Chem, 2002, 12: 3452–3457 Gao X, Hu G, Qian Z, Ding Y, Zhang S, Wang D, Yang M. Polymer, 2007, 48: 7309–7315 Zhang Y, Deng B, Liu Q. J Reinf Plas Comp, 2014, 33: 875–882 Blagojevic SL, Buhin Z, Igrec I. J Appl Polym Sci, 2013, 129: 1466–1475 Papageorgiou GZ, Achilias DS, Bikiaris DN, Karayannidis GP. Thermochim Acta, 2005, 427: 117–128 Perret B, Schartel B, Stöß K, Ciesielski M, Diederichs J, Döring M, Krämer J, Altstädt V. Eur Polymer J, 2011, 47: 1081–1089 Zhang W, Li X, Yang R. Polym Degrad Stabil, 2011, 96: 1821–1832 Dong Q, Liu M, Ding Y, Wang F, Gao C, Liu P, Wen B, Zhang S, Yang M. Polym Adv Technol, 2013, 24: 732–739 Chang SJ, Chang FC. J Appl Polym Sci, 1999, 72: 109–122 Avrami M. J Chem Phys, 1939, 7: 1103–1112 Avrami M. J Chem Phys, 1940, 8: 212–224 Avrami M. J Chem Phys, 1941, 9: 177–184 Clark EJ, Hoffman JD. Macromolecules, 1984, 17: 878–885 Hoffman JD, Miller RL. Macromolecules, 1988, 21: 3038–3051 Beck HN. J Appl Polym Sci, 1967, 11: 673–685 Zhong Y, Zhang YQ, Yang JJ, Li WL, Wang ZG, Xu DH, Chen SY, Ding YS. Sci China Chem, 2013, 56: 181–194