Stochastic integration and stochastic PDEs driven by jumps on the dual of a nuclear space

Springer Science and Business Media LLC - Tập 6 - Trang 618-689 - 2018
C. A. Fonseca-Mora1
1Escuela de Matemática, Universidad de Costa Rica, San José, Costa Rica

Tóm tắt

We develop a novel theory of weak and strong stochastic integration for cylindrical martingale-valued measures taking values in the dual of a nuclear space. This is applied to develop a theory of SPDEs with rather general coefficients. In particular, we can then study SPDEs driven by general Lévy processes in this context.

Tài liệu tham khảo

Badrikian, A.: Séminaire Sur les Fonctions Aléatoires Linéaires et les Mesures Cylindriques. Lecture Notes in Mathematics, vol. 139. Springer, Berlin (1970)

Bogachev, V.I.: Measure Theory, vol. I. Springer, Berlin (2007)

Bojdecki, T., Gorostiza, L.G.: Langevin equations for \(\mathscr {S}^{\prime }\)-valued Gaussian processes and fluctuation limits of infinite particle systems. Probab. Theory. Relat. Fields 73, 227–244 (1986)

Da-Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (1992)

Ding, D.: Stochastic Evolution Equations in Duals of Nuclear Fréchet Spaces, Nonlinear Evolution Equations and their Applications (Macau, 1998), pp. 57–71. World Scientific Publishing, River Edge (1999)

Gel’fand, I., Vilenkin, N.: Generalized Functions. Applications to Harmonic Analysis, vol. 4. Academic, Cambridge (1964)

Jakubowski, J.: Itô’s formula for generalized Wiener processes in conuclear spaces. Bull. Pol. Acad. Sci. Math. 43(3), 207–218 (1995)

Köthe, G.: Topological Vector Spaces II, Grundlehren der mathematischen Wissenschaften. Springer, Berlin (1979)

Mikulevicius, R., Rozovskii, B.L.: Normalized Stochastic Integrals in Topological Vector Spaces. Séminaire de probabilités XXXII. Lecture Notes in Mathematics, vol. 1686, pp. 137–165. Springer, Berlin (1998)

Peszat, S., Zabczyk, J.: Stochastic Partial Differential Equations with Lévy Noise, Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (2007)

Pietsch, A.: Nuclear Locally Convex Spaces, Ergebnisse der Mathematikund ihrer Grenzgebiete. Springer, Berlin (1972)

Schaefer, H.: Topological Vector Spaces, Graduate Texts in Mathematics, 2nd edn. Springer, Berlin (1999)

van Neerven, J.: Sandwiching \(C_{0}\)-semigroups. J. Lond. Math. Soc. 60(2), 581–588 (1999)

Xie, Y.: \(\Phi ^{\prime }\)-valued martingale measures and their limit theorems. Stoch. Anal. Appl. 19(3), 413–432 (2001)