Existence of Continuous and Càdlàg Versions for Cylindrical Processes in the Dual of a Nuclear Space

C. A. Fonseca-Mora1
1Escuela de Matemática, Universidad de Costa Rica, San José, 11501-2060, Costa Rica

Tóm tắt

Từ khóa


Tài liệu tham khảo

Applebaum, D., Riedle, M.: Cylindrical Lévy processes in Banach spaces. Proc. Lond. Math. Soc. 101(3), 697–726 (2010)

Badrikian, A.: Séminaire Sur les Fonctions Aléatoires Linéaires et les Mesures Cylindriques. Lecture Notes in Mathematics, vol. 39. Springer (1970)

Bojdecki, T., Talarczyk, A.: Particle picture approach of self-intersection local time for density processes in $${\cal{S}}^{\prime }({\mathbb{R}}^{d})$$ S ′ ( R d ) . Stoch. Process. Appl. 115, 449–479 (2005)

Dalecky, Y.L., Fomin, S.V.: Measure and Differential Equations in Infinite-Dimensional Space, Mathematics and Its Applications 76. Springer, Berlin (1991)

Dellacherie, C., Meyer, P.A.: Probabilities and Potential B. Theory of Martingales. North-Holland Publishing Company, Amsterdam (1982)

Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators, Cambridge Series in Advanced Mathematics 43. Cambridge University Press (1995)

Fernique, X.: Fonctions aléatoires à valeurs dans certains espaces nucléaires. Probab. Theory Relat. Fields 83, 87–99 (1989)

Fonseca-Mora, C.A.: Stochastic Analysis with Lévy Noise in the Dual of a Nuclear Space. PhD Thesis, The University of Sheffield (2015)

Fouque, J.-P.: Ann. Inst. H. Poincaré. La convergence en loi pour les processus à valeurs dans un espace nucléaire 20(3), 225–245 (1984)

Heyer, H.: Structural Aspects in the Theory of Probability, Series on Multivariate Analysis, 2nd edn. World Scientific, Singapore (2010)

Itô, K.: Foundations of Stochastic Equations in Infinite Dimensional Spaces, Series in Mathematics. SIAM, Philadelphia (1984)

Itô, K., Nawata, M.: Regularization of linear random functionals. In: Probability Theory and Mathematical Statistics. Proceedings of the Fourth USSR-Japan Symposium, Tbilisi, USSR, August 23–29, 1982. Lecture Notes in Mathematics 1021, pp. 257–267. Springer (1983)

Jarchow, H.: Locally Convex Spaces, Mathematische Leitfäden. Springer, Berlin (1981)

Kallianpur, G., Xiong, J.: Stochastic Differential Equations in Infinite Dimensional Spaces. Lecture Notes-Monograph Series. Institute of Mathematical Statistics, Shaker Heights (1995)

Kaspi, H., Ramanan, K.: SPDE limits of many-server queues. Ann. Appl. Probab. 23(1), 145–229 (2013)

Ledoux, M., Talagrand, M.: Probability in Banach Spaces, Isoperimetry and Processes, Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer, Berlin (1991)

Linde, W.: Probability in Banach Spaces, Stable and Infinitely Divisible Distributions. Wiley, Hoboken (1986)

Martias, C.: Sur les supports des processus à valeurs dans des espaces nucléaires. Ann. Inst. H. Poincaré 24(3), 345–365 (1988)

Minlos, R.A.: Generalized random processes and their extension to a measure. In: Selected Translations in Mathematical Statistics and Probability, vol. 3. American Mathematical Society, pp. 291–313 (1963)

Mitoma, I.: Martingales of random distributions. Mem. Fac. Sci. Kyushu Univ. Ser. A 35(1), 185–197 (1981)

Mitoma, I.: On the sample continuity of $${\fancyscript {S}}^{\prime }$$ S ′ -processes. J. Math. Soc. Jpn. 35(4), 629–636 (1983)

Mitoma, I., Okada, S., Okazaki, Y.: Cylindrical $$\sigma $$ σ -algebra and cylindrical measure. Osaka J. Math. 14(3), 635–647 (1977)

Narici, L., Beckenstein, E.: Topological Vector Spaces, Pure and Applied Mathematics, 2nd edn. CRC Press, Boca Raton (2011)

Peszat, S., Zabczyk, J.: Stochastic Partial Differential Equations with Lévy Noise, Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (2007)

Pietsch, A.: Nuclear Locally Convex Spaces, Ergebnisse der Mathematikund ihrer Grenzgebiete. Springer, Berlin (1972)

Priola, E., Zabczyk, J.: Structural properties of semilinear SPDEs driven by cylindrical stable processes. Probab. Theory Relat. Fields 149(1–2), 97–137 (2011)

Riedle, M.: Stochastic integration with respect to cylindrical Lévy processes in Hilbert spaces: an $$L^{2}$$ L 2 approach. Infin. Dimens. Anal. Quantum Probab. Relat. Top 17(1), 1450008 (2014)

Riedle, M.: Ornstein-Uhlenbeck processes driven by cylindrical Lévy processes. Potential Anal. 42, 809–838 (2015)

Sazonov, V.V.: A remark on characteristic functionals. Theory Probab. Appl. 3, 188–192 (1958)

Schaefer, H.: Topological Vector Spaces, Graduate Texts in Mathematics, 2nd edn. Springer, Berlin (1999)

Schwartz, L.: Radon Measures on Arbitrary Topological Spaces and Cylindrical Measures, Tata Institute of Fundamental Research Studies in Mathematics. Oxford University Press, Oxford (1973)

Trèves, F.: Topological Vector Spaces, Pure and Applied Mathematics, Distributions and Kernels. Academic Press, Cambridge (1967)

Vakhania, N.N., Tarieladze, V.I., Chobanyan, S.A.: Probability Distributions on Banach Spaces. Reidel Publishing, Boston (1987)

van Neerven, J.M.A.M., Veraar, M.C., Weis, L.: Stochastic evolution equations in UMD Banach spaces. Stoch. Process. Appl. 255(4), 940–993 (2008)