Stirling modular forms and special values of multiple cotangent functions

The Ramanujan Journal - Tập 28 - Trang 409-422 - 2012
Hidekazu Tanaka1
1Department of Biomedical Engineering, Toyo University, Kawagoe-shi, Japan

Tóm tắt

We give a new proof of the modularity of the Dedekind eta function using a transformation formula of Stirling modular forms. Moreover, we study special values of multiple cotangent functions. Then we obtain some relations between special values of multiple cotangent functions.

Tài liệu tham khảo

Barnes, E.W.: On the theory of the multiple gamma function. Trans. Camb. Philos. Soc. 19, 374–425 (1904)

Ishibashi, M.: Multiple cotangent and generalized eta functions. Ramanujan J. 4, 221–229 (2000)

Lerch, M.: Dals̆í studie v oboru malmsténovskýchr̆ad. Rozpr. C̆es. Akad. 3(28), 1–61 (1894)

Shibukawa, G.: Bilateral zeta functions and their applications (2011). arXiv:1106.1754 math[NT]

Siegel, C.L.: A simple proof of \(\eta(-\frac{1}{\tau})=\sqrt{\frac {\tau}{i}}\eta(\tau)\). Mathematika 1, 4 (1954)