Multiple gamma functions, multiple sine functions, and Appell’s O-functions
Tóm tắt
Kurokawa introduced q-multiple gamma functions and q-multiple sine functions. We show that the Appell’s O-function is expressed via the q-multiple gamma function. We also give some applications of this result. For example, we obtain a formula for the “Stirling modular form” and calculate special values of the q-multiple sine function. Moreover, we give some formulas of Eisenstein series and double cotangent functions and its generalization. Then the former gives an infinite product expression of the double sine function explicitly and a result of Kurokawa.
Tài liệu tham khảo
Appell, P.: Sur une class de fonctions analogues aux fonctions Eulériennes. Math. Ann. 19, 84–102 (1882)
Barnes, E.W.: The genesis of the double gamma functions. Proc. Lond. Math. Soc. 31, 358–381 (1899)
Barnes, E.W.: The theory of the double gamma function. Philos. Trans. R. Soc. Lond. Ser. A 196, 265–388 (1901)
Barnes, E.W.: On the theory of the multiple gamma function. Trans. Camb. Philos. Soc. 19, 374–425 (1904)
Berndt, B.C., Dixit, A.: A transformation formula involving the gamma and Riemann zeta functions in Ramanujan’s lost notebook. arXiv:0904.1053v2 [math.NT], 8 Apr 2009
Deninger, C.: Local L-factors of motives and regularized determinants. Invent. Math. 107, 135–150 (1992)
Kurokawa, N.: Multiple Sine Functions. Lecture Notes in Japanese. Lectures delivered at Tokyo University, notes taken by S. Koyama (1991)
Kurokawa, N.: Derivatives of multiple sine functions. Proc. Jpn. Acad. Ser. A 80, 65–69 (2004)
Kurokawa, N.: Examples of Stirling modular form. Preprint (2007)
Kurokawa, N.: Limit values of Eisenstein series and multiple cotangent functions. J. Number Theory 128(6), 1775–1783 (2008). doi:10.1016/j.jnt.2007.06.003
Kurokawa, N., Koyama, S.: Multiple sine functions. Forum Math. 15, 839–876 (2003)
Kurokawa, N., Wakayama, M.: On q-basic multiple gamma functions. Int. J. Math. 14, 885–902 (2003)
Kurokawa, N., Wakayama, M.: Zeta regularized product for expressions for multiple trigonometric functions. Tokyo J. Math. 27, 469–480 (2004)
Kurokawa, N., Wakayama, M.: Generalized zeta regularizations, quantum class number formulas, and Appell’s O-functions. Ramanujan J. 10, 291–303 (2005)
Koyama, S., Kurokawa, N.: Multiple Eisenstein series and multiple cotangent functions. J. Number Theory 128(6), 1769–1774 (2008). doi:10.1016/j.jnt.2007.06.004
Lerch, M.: Dals̆í studie v oboru Malmsténovských r̆ad. Rozpravy C̆eské Akad. 3(28), 1–61 (1894)
Narukawa, A.: The modular properties and the integral representations of the multiple elliptic gamma functions. Adv. Math. 189(2), 247–267 (2004)
Nishizawa, M.: An elliptic analogue of the multiple gamma function. J. Phys. A 34(36), 7411–7421 (2001)
Shintani, T.: On a Kronecker limit formula for real quadratic fields. J. Fac. Sci., Univ. Tokyo, Ser. IA, Math. 24(1), 167–199 (1977)
Shintani, T.: A proof of the classical Kronecker limit formula. Tokyo J. Math. 3, 191–199 (1980)
Tanaka, H.: Special values of multiple sine functions. Kyushu J. Math. 62, 123–137 (2008)
Ruijsenaars, S.N.M.: On Barnes’ multiple zeta and gamma functions. Adv. Math. 156, 107–132 (2000)
Ruijsenaars, S.N.M.: Special functions defined by analytic difference equations. In: Special Functions 2000: Current Perspective and Future Directions. NATO Sci. Ser. II, Math. Phys. Chem., vol. 30, pp. 281–333. Kluwer Academic, Dordrecht (2001)