Specificity of the Schrödinger equation

Quantum Studies: Mathematics and Foundations - Tập 2 - Trang 275-287 - 2015
A. M. Cetto1, L. de la Peña2, A. Valdés-Hernández2
1Instituto de Física, Universidad Nacional Autónoma de México, Mexico, D.F., Mexico
2Instituto de Física, Universidad Nacional Autónoma de México, Mexico D.F., Mexico

Tóm tắt

As discussed in the first part of this paper, a key problem shared by some of the most well-known phenomenological derivations of Schrödinger-like equations is the (arbitrary) choice of the free parameters involved. Specifically, the (universal) constant $$\hbar $$ that makes the behavior of quantum systems so distinctive is normally introduced into the description by hand. This, however, does not need to be so. As shown in the present paper, the derivation provided by stochastic electrodynamics leaves no room for free parameters, the appearance of Planck’s constant being determined univocally by the physics of the problem.

Tài liệu tham khảo

Khrennikov, A.: Beyond Quantum. Pan Stanford Publishing, Singapore (2014)

’t Hooft, G.: The obstinate reductionist’s point of view on the laws of physics. In: Proceedings of Europa—Vision und Wirklichkeit, Europäisches Forum Alpbach, p. 296. E. Busek Verlag, Ö sterreich (2001)

’t Hooft, G.: In: Elitzur, A., Dolev, S., Kolenda, N. (eds.) Quo Vadis Quantum Mechanics? Philadelphia (2002)

Schrödinger, E.: Sitzungsber. Preuss. Akad. Wissen. Berlin, Phys. Math. Klasse, p. 144 (1931)

Schrödinger, E.: Sur la théorie relativiste de l’électron et l’interpretation de la mécanique quantique. Ann. Inst. Henri Poincaré 2, 269 (1932)

Zambrini, J.-C.: Stochastic mechanics according to E. Schrödinger. Phys. Rev. A 33, 1532 (1986)

de Broglie, L.: Le mouvement brownien d’une particule dans son onde. C. R. Acad. Sci. Paris B 264, 1041 (1967)

Fényes, I.: A deduction of Schrödinger equation. Acta Bolyaina 1, 5 (1946)

Nelson, E.: Quantum Fluctuations. Princeton University Press, NJ (1985)

Cetto, A.M.: Investigaciones sobre una teoría estocástica de la mecánica cuántica, Ph. D. thesis. UNAM, Mexico (1972)

Ballentine, L.E.: Quantum Mechanics. Prentice Hall, NJ (1990)

Ballentine, L.E.: Quantum Mechanics. A Modern Development. World Scientific, Singapore (1998)

de la Peña, L.: A simple derivation of the Schrödinger equation from the theory of Markov processes. Phys. Lett. A 24, 603 (1967)

de la Peña, L., Cetto, A.M.: in Courants, amers, é cueils en microphysique. Fondation Louis de Broglie, Paris (1993)

Bohm, D., Hiley, D.J.: The Undivided Universe. An Ontological Interpretation of Quantum Theory. Routledge, London (1995)

Carles, R., Danchin, R., Saut, J.-C.: Madelung. Gross-Pitaevskii and Korteweg. Nonlinearity 25, 2843 (2012)

Couder, Y., Protière, S., Fort, E., Boudaoud, A.: Dynamical phenomena: walking and orbiting droplets. Nature 437, 208 (2005)

Brady, R., Anderson, R.: Analogue Physics. A Student’s Guide to Waves in an Ideal Fluid. Cambridge University Computer Center, Cambridge (2013)

de la Peña, L., Cetto, A.M.: The Quantum Dice. An Introduction to Stochastic Electrodynamics. Kluwer, Dordrecht (1996)

de la Peña, L., Cetto, A.M., Valdés-Hernández, A.: The Emerging Quantum. The Physics Behind Quantum Mechanics. Springer, Switzerland (2015)

Cetto, A.M., de la Peña, L., Valdés-Herná ndez, A.: J. Quantization as an emergent phenomenon due to matter-zeropoint field interaction. Phys. Conf. Ser. 361, 012013 (2012)

Cetto, A.M., de la Peña, L.: Valdés-Herná ndez, A.: Quantum behavior derived as an essentially stochastic phenomenon. Physica Scripta T 151, 014008 (2012)

Jacobs, K.: Stochastic Processes for Physicists. Understanding Noisy Systems. Cambridge University Press, Cambridge (2010)

Fujita, S., Godoy, S.V.: Mathematical Physics. Wiley-VCH, Weinheim (2010)