Semigroup identities of supertropical matrices

Springer Science and Business Media LLC - Tập 105 - Trang 466-477 - 2022
Zur Izhakian1, Glenn Merlet2
1Department of Mathematics, Ariel University, Ariel, Israel
2Aix Marseille Univ, CNRS, Centrale Marseille, I2M, Marseille, France

Tóm tắt

We prove that, for any n, the monoid of all $$n \times n$$ supertropical matrices extending tropical matrices satisfies nontrivial semigroup identities; in particular, such supertropical triangular matrices admit exactly the same identities satisfied by tropical triangular matrices. These semigroup identities are carried over to labeled-weighted digraphs with double arcs.

Tài liệu tham khảo

Butkovič, P.: Max-Linear Systems: Theory and Algorithms. Springer-Verlag London Ltd., London (2010)

Chen, Y., Hu, X., Luo, Y., Sapir, O.: The finite basis problem for the monoid of \(2\times 2\) upper triangular tropical matrices. Bull. Aust. Math. Soc. 94(1), 54–64 (2016)

Heidergott, B., Olsder, G.J., van der Woude, J.: Max Plus at Work: Modeling and Analysis of Synchronized Systems: A Course on Max-Plus Algebra and its Applications. Princeton University Press, Princeton (2006)

Izhakian, Z.: Commutative \(\nu \)-algebra and supertropical algebraic geometry, arXiv:1901.08032, (2019)

Izhakian, Z., Merlet, G.: Semigroup identities of tropical matrices through matrix ranks, arXiv:1806.11028, (2018)

Izhakian, Z., Niv, A., Rowen, L.: Supertropical \(\operatorname{SL}_n\). Linear Multilinear Algebra 66(7), 1461–1483 (2018)

Izhakian, Z., Rhodes, J.: New representations of matroids and generalizations, arXiv:1103.0503, (2011)

Izhakian, Z., Rhodes, J.: Boolean representations of matroids and lattices, arXiv:1108.1473, (2011)

Shevrin, L.N., Volkov, M.V.: Identities of semigroups. Izv. VUZ. Matematika (Russian) 11, 3–47 (1985); Soviet Math. Iz. Vuz. 29 (English translation) 11, 1–64 (1985)

Shitov, Y.: A semigroup identity for tropical 3x3 matrices, arXiv:1406.2601, (2014)