Supertropical matrix algebra
Tóm tắt
Từ khóa
Tài liệu tham khảo
M. Akian, R. Bapat and S. Gaubert, Max-plus algebra, in Handbook of Linear Algebra (L. Hogben, R. Brualdi, A. Greenbaum, R. Mathias, eds.), Chapman and Hall, London, 2006.
A. Ambrosio, Proof of Birkhoff-von Neumann Theorem, PlanetMath.Org, 2005.
G. Birkhoff, Tres observaciones sobre el algebra lineal, Universidad Nacional de Tucuman Revista, Serie A 5 (1946), 147–151.
R. A. Brualdi and H. J. Ryser, Combinatorial Matrix Theory, Cambridge University Press, Cambridge, 1991.
M. Develin, F. Santos and B. Sturmfels, On the tropical rank of a matrix, in Discrete and Computational Geometry, (J. E. Goodman, J. Pach and E. Welzl, eds.), Mathematical Sciences Research Institute Publications, Volume 52, Cambridge University Press, Cambridge, 2005, pp. 213–242.
R. Diestel, Graph Theory, Springer, New York, 1997.
A. M. Gibbons, Algorithmic Graph Theory, Cambridge University Press, Cambridge, 1985.
J. Golan, The Theory of Semirings with Applications in Mathematics and Theoretical Computer Science, Volume 54, Longman Sci & Tech., Harlow, 1992.
B. Hall, Lie Groups, Lie Algebras, and Representations: An Elementary Introduction, Springer, New York, 2003.
Z. Izhakian, Tropical arithmetic and algebra of tropical matrices, Communications in Algebra 37 (2009), 1445–1468. (Preprint at arXiv:math.AG/0505458).
Z. Izhakian, The tropical rank of a matrix, preprint at arXiv:math.AC/0604208, 2005.
Z. Izhakian, M. Knebusch and L. Rowen, Supertropical semirings and supervaluations, preprint, 2009.
Z. Izhakian and L. Rowen, Supertropical algebra, Advances in Mathematics 225 (2010), 2222–2286. (Preprint at arXiv:0806.1175.)
Z. Izhakian and L. Rowen, The tropical rank of a matrix, Communications in Algebra 37 (2009), 3912–3927.
G. Lallement, Semigroups and Combinatorial Applications, Wiley, New York, 1979.
J. Richter-Gebert, B. Sturmfels and T. Theobald, First steps in tropical geometry, in Idempotent Mathematics and Mathematical Physics, Proceedings Vienna 2003, (G. L. Litvinov and V. P. Maslov, eds.), Contemporary Mathematics, Vol. 377, American Mathematical Society, Providence, RI, 2005, pp. 289–317.
M. Slone, Proof of Hall’s Marriage Theorem, PlanetMath.Org, 2002.