Search for the QCD critical point with fluctuations of conserved quantities in relativistic heavy-ion collisions at RHIC: an overview

Nuclear Science and Techniques - Tập 28 - Trang 1-40 - 2017
Xiaofeng Luo1,2, Nu Xu1,3
1Institute of Particle Physics and Key Laboratory of Quark and Lepton Physics (MOE), Central China Normal University, Wuhan, China
2Department of Physics and Astronomy, University of California, Los Angeles, USA
3Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, USA

Tóm tắt

Fluctuations of conserved quantities, such as baryon, electric charge, and strangeness number, are sensitive observables in relativistic heavy-ion collisions to probe the QCD phase transition and search for the QCD critical point. In this paper, we review the experimental measurements of the cumulants (up to fourth order) of event-by-event net-proton (proxy for net-baryon), net-charge and net-kaon (proxy for net-strangeness) multiplicity distributions in Au+Au collisions at $$\sqrt{{s}_{\text{NN}}}=7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, 200$$  GeV from the first phase of beam energy scan program at the relativistic heavy-ion collider (RHIC). We also summarize the data analysis methods of suppressing the volume fluctuations, auto-correlations, and the unified description of efficiency correction and error estimation. Based on theoretical and model calculations, we will discuss the characteristic signatures of critical point as well as backgrounds for the fluctuation observables in heavy-ion collisions. The physics implications and the future second phase of the beam energy scan (2019–2020) at RHIC will also be discussed.

Tài liệu tham khảo

STAR Note 0598: BES-II whitepaper.http://drupal.star.bnl.gov/STAR/starnotes/public/sn0598

G. Endrődi, Z. Fodor, S.D. Katz et al., J. High Energy Phys. 2011, 1 (2011). doi:10.1007/JHEP04(2011)001

K. Rajagopal, F. Wilczek, At the Frontier of Particle Physics/Handbook of QCD (World Scientific, Singapore, 2001)

S. Jeon, V. Koch, Fluctuations of particle ratios and the abundance of hadronic resonances. Phys. Rev. Lett. 83, 5435 (1999). doi:10.1103/PhysRevLett.83.5435

Y. Hatta, M.A. Stephanov, Proton-number fluctuation as a signal of the QCD critical end point. Phys. Rev. Lett. 91, 102003 (2003). doi:10.1103/PhysRevLett.91.102003

M. Cheng, P. Hegde, C. Jung et al., Baryon number, strangeness, and electric charge fluctuations in QCD at high temperature. Phys. Rev. D 79, 074505 (2009). doi:10.1103/PhysRevD.79.074505

A. Bazavov, H.-T. Ding, P. Hegde et al., Freeze-out conditions in heavy ion collisions from QCD thermodynamics. Phys. Rev. Lett. 109, 192302 (2012). doi:10.1103/PhysRevLett.109.192302

M. Asakawa, S. Ejiri, M. Kitazawa, Third moments of conserved charges as probes of QCD phase structure. Phys. Rev. Lett. 103, 262301 (2009). doi:10.1103/PhysRevLett.103.262301

P. Braun-Munzinger, J. Wambach, Colloquium: phase diagram of strongly interacting matter. Rev. Mod. Phys. 81, 1031 (2009). doi:10.1103/RevModPhys.81.1031

S. Datta, R.V. Gavai, S. Gupta, Quark number susceptibilities and equation of state at finite chemical potential in staggered QCD with Nt=8. Phys. Rev. D 95, 054512 (2017). doi:10.1103/PhysRevD.95.054512

F. Karsch, Presentation at CPOD2016, Wrocław, Poland. http://ift.uni.wroc.pl/~cpod2016/Karsch.pdf

F. Karsch, Presentation at INT Workshop 2016, Seattle, US. http://www.int.washington.edu/talks/WorkShops/int_16_3/People/Karsch_F/Karsch.pdf

B. Berche, M. Henkel, R. Kenna, Revista Brasileira de Ensino de Física, Critical phenomena: 150 years since Cagniard de la Tour 31, 2602–2601 (2009)

M. Stephanov, QCD phase diagram and the critical point. Int. J. Mod. Phys. A 20, 4387 (2005). doi:10.1142/S0217751X05027965

S. Jeon, V. Koch, Event by event fluctuations. Quark–Gluon Plasma 3, 430–490 (2004). doi:10.1142/9789812795533_0007

V. Koch, Hadronic fluctuations and correlations. Landolt Börnstein 23, 626–652 (2010). doi:10.1007/978-3-642-01539-7_20

J. Fu, Higher moments of multiplicity fluctuations in a hadron-resonance gas with exact conservation laws. arXiv:1610.07138

A. Bazavov, T. Bhattacharya, C. Detar et al., Equation of state in (2+1)-flavor QCD. Phys. Rev. D 90, 094503 (2014). doi:10.1103/PhysRevD.90.094503

A. Bazavov, H.-T. Ding, P. Hegde et al., QCD equation of state to O(\(\mu ^6_B\)) from lattice QCD. Phys. Rev. D 95, 054504 (2017). doi:10.1103/PhysRevD.95.054504

W.K. Fan, X.F. Luo, H.S. Zong, Susceptibilities of conserved charges within a modified Nambu–Jona–Lasinio model. arXiv: 1608.07903

A. Mukherjee, J. Steinheimer, S. Schramm, Higher-order baryon number susceptibilities: interplay between the chiral and the nuclear liquid–gas transitions. arXiv: 1611.10144

S. Mukherjee, R. Venugopalan, Y. Yin, Universal off-equilibrium scaling of critical cumulants in the QCD phase diagram. Phys. Rev. Lett. 117, 222301 (2016). doi:10.1103/PhysRevLett.117.222301

A. Bzdak, V. Koch, N. Strodthoff, Cumulants and correlation functions vs the QCD phase diagram. arXiv: 1607.07375

Y. Nara, N. Otuka, A. Ohnishi et al., Relativistic nuclear collisions at \(10A\) GeV energies from \(p\)+Be to Au+Au with the hadronic cascade model. Phys. Rev. C 61, 024901 (1999). doi:10.1103/PhysRevC.61.024901

B.I. Abelev et al. (STAR Collaboration), Systematic measurements of identified particle spectra in \(pp\), \(d\)+Au, and Au+Au collisions at the STAR detector. Phys. Rev. C 79, 034909 (2009). doi:10.1103/PhysRevC.79.034909

Anirban DasGupta, Asymptotic Theorey of Statistics and Probability (Springer, Berlin, 2008)

G. Maurice, M.A. Kendall, The Advanced Theory of Statistics, vol. 1 (Charles Griffin & Company Limited, London, 1945)

L. Adamczyk et al. (STAR Collaboration), Energy dependence of moments of net-proton multiplicity distributions at RHIC. Phys. Rev. Lett. 112, 032302 (2014). doi:10.1103/PhysRevLett.112.032302

L. Adamczyk et al. (STAR Collaboration), Beam energy dependence of moments of the net-charge multiplicity distributions in Au+Au collisions at RHIC. Phys. Rev. Lett. 113, 092301 (2014). doi:10.1103/PhysRevLett.113.092301

J. Xu, Talk at RHIC & AGS User Meeting (2016). https://www.bnl.gov/aum2016/content/workshops/Workshop_1b/xu_ji.pdf

M.M. Aggarwal et al. (STAR Collaboration), Higher moments of net proton multiplicity distributions at RHIC. Phys. Rev. Lett. 105, 022302 (2010). doi:10.1103/PhysRevLett.105.022302

A. Adare et al. (PHENIX Collaboration), Measurement of higher cumulants of net-charge multiplicity distributions in Au+Au collisions at \(\sqrt{s_NN}=7.7\)-200 GeV. Phys. Rev. C 93, 011901(R) (2016). doi:10.1103/PhysRevC.93.011901

J. Xu, S.L. Yu, F. Lui et al., Cumulants of net-proton, net-kaon, and net-charge multiplicity distributions in Au+Au collisions at \(\sqrt{s_{\text{NN}}}=7.7\), 11.5, 19.6, 27, 39, 62.4, and 200 GeV within the UrQMD model. Phys. Rev. C 94, 024901 (2016). doi:10.1103/PhysRevC.94.024901

S. Borsanyi, Z. Fodor, S.D. Katz et al., Freeze-out parameters: lattice meets experiment. Phys. Rev. Lett. 111, 062005 (2013). doi:10.1103/PhysRevLett.111.062005

J. Noronha-Hostler, R. Bellwied, J. Gunther, et al., Kaon fluctuations from lattice QCD. arXiv: 1607.02527

STAR Note 0619: iTPC proposal. https://drupal.star.bnl.gov/STAR/starnotes/public/sn0619

L. Adamczyk et al., STAR Collaboration, Physics program for the STAR/CBM eTOF upgrade. arXiv:1609.05102

R. Rapp, Advances in High Energy Physics (Hindawi Publishing Corporation, Cairo, 2013)

R. Rapp, J. Wambach, Advances in Nuclear Physics (Springer, Berlin, 2002)