Robust berth scheduling using machine learning for vessel arrival time prediction
Tóm tắt
Tài liệu tham khảo
Arguedas VF, Pallotta G, Vespe M (2018) Maritime traffic networks: from historical positioning data to unsupervised maritime traffic monitoring. IEEE Trans Intell Transp Syst 19:722–732. https://doi.org/10.1109/tits.2017.2699635
Belousov B, Abdulsamad H, Klink P, Parisi S, Peters J (Eds) (2021) Reinforcement learning algorithms: analysis and applications. Studies in computational intelligence, vol 883. Springer, Cham: Denmark https://doi.org/10.1007/978-3-030-41188-6
Bierwirth C, Meisel F (2010) A survey of berth allocation and quay crane scheduling problems in container terminals. Eur J Oper Res 202:615–627. https://doi.org/10.1016/j.ejor.2009.05.031
Chen M, Hao Y, Hwang K, Wang L, Wang L (2017) Disease prediction by machine learning over big data from healthcare communities. IEEE Access 5:8869–8879. https://doi.org/10.1109/ACCESS.2017.2694446
Chen S, Wang F, Wei X, Tan Z, Wang H (2020) Analysis of tugboat activities using AIS data for the Tianjin port. Transp Res Rec 2674:498–509. https://doi.org/10.1177/0361198120916734
Cheimanoff N, Fontane F, Kitri MN, Tchernev N (2021) A reduced VNS based approach for the dynamic continuous berth allocation problem in bulk terminals with tidal constraints. Expert Syst Appl 168:114215. https://doi.org/10.1016/j.eswa.2020.114215
de León AD, Lalla-Ruiz E, Melián-Batista B, Moreno-Vega JM (2017) A machine learning-based system for berth scheduling at bulk terminals. Expert Syst Appl 87:170–182. https://doi.org/10.1016/j.eswa.2017.06.010
Dobrkovic A, Iacob M-E, van Hillegersberg J, Mes MRK, Glandrup M (2016) Towards an approach for long term AIS-based prediction of vessel arrival times. In: Zijm H, Klumpp M, Clause U, ten Hompel M (eds) Logistics and supply chain innovation: bridging the gap between theory and practice, 1st edn. Springer, Cham. https://doi.org/10.1007/978-3-319-22288-2_16
Dornemann J, Rückert N, Fischer K, Taraz A (2020) Artificial intelligence and operations research in maritime logistics. In: Jahn C, Kersten W, Ringle CM (Eds.) Data science in maritime and city logistics: data-driven solutions for logistics and sustainability. Proceedings of the Hamburg international conference of logistics. Epubli GmbH, Hamburg, pp 337–381. https://doi.org/10.15480/882.3140
Eggensperger K, Feurer M, Hutter F, Bergstra K, Snoek J, Hoos HH, Leyton-Brown K (2013) Towards an empirical foundation for assessing bayesian optimization of hyperparameters. In: NIPS Workshop on bayesian optimization in theory and practice. https://www.cs.ubc.ca/~hoos/Publ/EggEtAl13.pdf
Fancello G, Pani C, Pisano M, Serra P, Zuddas P, Fadda P (2011) Prediction of arrival times and human resources allocation for container terminal. Marit Econ Logist 13:142–173. https://doi.org/10.1057/mel.2011.3
Feng M, Shaw S-L, Peng G, Fang Z (2020) Time efficiency assessment of ship movements in maritime ports: a case study of two ports based on AIS data. J Transp Geogr 86:102741. https://doi.org/10.1016/j.jtrangeo.2020.102741
Franzkeit J, Pache H, Jahn C (2020) Investigation of vessel waiting times using AIS data. In: Freitag M, Haasis H-D, Kotzab H, Pannek J (eds) Dynamics in logistics: proceedings of the 7th international conference LDIC 2020. Springer, Bremen, pp 70–78. https://doi.org/10.1007/978-3-030-44783-0_7
Frochte J (2019) Maschinelles Lernen: Grundlagen und algorithmen in Python, 2nd edn. Hanser, München. https://doi.org/10.3139/9783446459977
Fujino I, Claramunt C, Boudraa A-O (2018) Extracting courses of vessels from AIS data and real-time warning against off-course. In: Proceedings of the 2nd international conference on big data research. ACM, Weihai, pp 62–69. https://doi.org/10.1145/3291801.3291823
Géron A (2018) Praxiseinstieg machine learning Mit Scikit-Learn Und Tensorflow: Konzepte, tools Und Techniken Für Intelligente Systeme, 1st edn. O’Reilly, Heidelberg
Grida M, Lee C-Y (2018) An empirical model for estimating berth and sailing times of mega container ships. Marit Policy Manag 45:1078–1093. https://doi.org/10.1080/03088839.2018.1452304v
Heilig L, Stahlbock R, Voß S (2020) From digitalization to data-driven decision making in container terminals. In: Böse JW (ed) Handbook of terminal planning, 2nd edn. Springer, Cham, pp 125–154. https://doi.org/10.1007/978-3-030-39990-0_6
Jahn C, Scheidweiler T (2018) Port call optimization by estimating ships’ time of arrival. In: Freitag M, Kotzab H, Pannek J (eds) Dynamics in logistics: proceedings of the 6th international conference LDIC 2018. Springer, Bremen, pp 172–177. https://doi.org/10.1007/978-3-319-74225-0_23v
Kolley L, Rückert N, Fischer K (2021) A robust berth allocation optimization procedure based on machine learning. In: Buscher U, Lasch R, Schönberger J (eds) Logistics management contributions of the section logistics of the German Academic Association for business research. Springer, Dresden, pp 107–122. https://doi.org/10.1007/978-3-030-85843-8_7
Kwun H, Bae H (2021) Prediction of vessel arrival time using auto identification system data. Int J Innov Comput Inf Control 17:725–734. https://doi.org/10.24507/ijicic.17.02.725
Langley P, Simon HA (1995) Applications of machine learning and rule induction. Commun ACM 38:54–64. https://doi.org/10.1145/219717.219768
Lee H-T, Lee J-S, Son W-J, Cho I-S (2020) Development of machine learning strategy for predicting the risk range of ship’s berthing velocity. J Mar Sci Eng 8:376. https://doi.org/10.3390/jmse8050376
Li Y, Chu F, Zheng F, Kacem I (2019) Integrated berth allocation and quay crane assignment with uncertain maintenance activities. In: Zheng F, Chu F, Liu M (ed) 2019 international conference on industrial engineering and systems management. IEEE, Shanghai, pp 1–6. https://doi.org/10.1109/iesm45758.2019.8948115
Li B, He Y (2020) Container terminal liner berthing time prediction with computational logistics and deep learning. In: 2020 IEEE international conference on systems, man, and cybernetics. IEEE, Toronto, pp 2417–2424. https://doi.org/10.1109/smc42975.2020.9282816
Li B, He Y (2021) Computational logistics for container terminal handling systems with deep learning. Comput Intell Neurosci 2021:5529914. https://doi.org/10.1155/2021/5529914
Liu DC, Nocedal J (1989) On the limited memory BFGS method for large scale optimization. Math Prog 45:503–528. https://doi.org/10.1007/BF01589116
Mestl T, Dausendschön K (2016) Port ETA Prediction based on AIS Data. In: Bertram V (ed) 15th international conference on computer and it applications in the maritime industries COMPIT 16. Lecce, Italy, pp 331–338.
Pallotta G, Vespe M, Bryan K (2013) Vessel pattern knowledge discovery from AIS data: a framework for anomaly detection and route prediction. Entropy 15:2218–2245. https://doi.org/10.3390/e15062218
Pani C, Fadda P, Fancello G, Frigau L, Mola F (2014) A data mining approach to forecast late arrivals in a transhipment container terminal. Transport 29:175–184. https://doi.org/10.3846/16484142.2014.930714
Pani C, Vanelslander T, Fancello G, Cannas M (2015) Prediction of late/early arrivals in container terminals-a qualitative approach. Eur J Transp Infrastruct Res 15:536–550. https://doi.org/10.18757/ejtir.2015.15.4.3096
Rodriguez-Molins M, Salido MA, Barber F (2014b) Robust scheduling for berth allocation and quay crane assignment problem. Math Probl Eng. https://doi.org/10.1155/2014/834927
Salcedo-Sanz S, Cornejo Bueno L, Prieto L, Paredes D, García-Herrera R (2018) Feature selection in machine learning prediction for renewable energy applications. Renew Sustain Energy Rev 90:728–741. https://doi.org/10.1016/j.rser.2018.04.008
Schmidt-Hieber J (2020) Nonparametric regression using deep neural networks with ReLU activation function. Ann Stat 48:1875–1897. https://doi.org/10.1214/19-AOS1875
Shukla AK, Singh P, Vardhan M (2019) A hybrid framework for optimal feature subset selection. J Intell Fuzzy Syst 36:2247–2259. https://doi.org/10.3233/JIFS-169936
Umang N, Bierlaire M, Erera AL (2017) Real-time management of berth allocation with stochastic arrival and handling times. J Sched 20:67–83. https://doi.org/10.1007/s10951-016-0480-2
Virjonen P, Nevalainen P, Pahikkala T, Heikkonen J (2018) Ship movement prediction using k-NN method. In: 2018 baltic geodetic congress. IEEE. Olsztyn, pp 304–309. https://doi.org/10.1109/bgc-geomatics.2018.00064
Wang Z, Guo C (2018) Minimizing the risk of seaport operations efficiency reduction affected by vessel arrival delay. Ind Manag Data Syst 118:1498–1509. https://doi.org/10.1108/IMDS-12-2017-0563
Wu L, Xu Y, Wang F (2020) Identifying port calls of ships by uncertain reasoning with trajectory data. ISPRS Int J Geo-Inf 9:756. https://doi.org/10.3390/ijgi9120756
Wu Y, Miao L (2020) A robust scheduling model for continuous berth allocation problem under uncertainty. In: 5th international conference on electromechanical control technology and transportation. IEEE. Nanchang, pp 43–49. https://doi.org/10.1109/icectt50890.2020.00017
Xiang X, Liu C, Miao L (2017) A bi-objective robust model for berth allocation scheduling under uncertainty. Transp Res E Logist Transp Rev 106:294–319. https://doi.org/10.1016/j.tre.2017.07.006
Xiao Z, Ponnambalam L, Fu X, Zhang W (2017) Maritime traffic probabilistic forecasting based on vessels’ waterway patterns and motion behaviors. IEEE Trans Intell Transp Syst 18:3122–3134. https://doi.org/10.1109/tits.2017.2681810
Xu Y, Chen Q, Quan X (2012) Robust berth scheduling with uncertain vessel delay and handling time. Ann Oper Res 192:123–140. https://doi.org/10.1007/s10479-010-0820-0
Yang D, Wu L, Wang S, Jia H, Li KX (2019) How big data enriches maritime research–a critical review of automatic identification system (AIS) data applications. Transp Rev 39:755–773. https://doi.org/10.1080/01441647.2019.1649315
Zhang G, Patuwo BE, Hu MY (1998) Forecasting with artificial neural networks: the state of the art. Int J Forecast 14:35–62. https://doi.org/10.1016/S0169-2070(97)00044-7
Zhang X, Sun B, Sun J, Gou Z (2014) The berth and quay cranes integrated scheduling based on redundancy policy. In: Proceedings of the 33rd Chinese control conference. IEEE, Nanjing, pp 7595–7600. https://doi.org/10.1109/chicc.2014.6896265