Re-Os Geochronology of the Liuchapo Formation across the Ediacaran-Cambrian Boundary of the Yangtze Block (South China)

Journal of Earth Science - Tập 33 - Trang 25-35 - 2022
Yong Fu1,2, Fuliang Wang1,3, Chuan Guo1,2, Chao Li4, Peng Xia1,2
1College of Resource and Environmental Engineering, Guizhou University, Guiyang, China
2Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, China
3Guizhou Geological Environment Monitoring Institute, Guizhou, China
4National Research Center for Geoanalysis, Chinese Academy of Geological Sciences, Beijing, China

Tóm tắt

The Ediacaran-Cambrian (E-C) succession in South China records remarkable oceanic, biological and geochemical variations, but it was not well defined geochronologically, which hinders the interpretation of the spatio-temporal seawater chemical architecture during the time E-C interval. This study presents two Re-Os isochron ages of 520.2 ± 6.1 and 561.7 ± 8.5 Ma for the barite-rich black shales from the top Liuchapo and Doushantuo formations respectively in Tianzhu County, Guizhou Province. In combination with existing age data, the two new Re-Os isochron ages suggest that the Liuchapo Formation was deposited between 550 and 520 Ma. Moreover, like the polymetallic Ni-Mo-PGE layers of shelf margin (or platform) facies and V-rich horizons of transitional (or shelf slope) to deep-water facies, the barite deposits were likely formed due to differential mineralization. The timing offset likely resulted from differential elemental concentration related to certain local factors (i.e., hydrothermal fluids, seawater redox and biological activity). The isochron-derived initial 187Os/188Os ratios of the top Liuchapo Formation (0.902 ± 0.048) and the Doushantuo Formation (0.740 ± 0.042) fall within the range of continental weathering flux (1.54) and oceanic crust (0.126), implying the involvement of marine hydrothermal fluids. Moreover, their difference of initial 187Os/188Os ratios may reflect variations of continental weathering intensity and uplift magnitude.

Tài liệu tham khảo

An, Z. H., Jiang, G. Q., Tong, J. N., et al., 2015. Stratigraphic Position of the Ediacaran Miaohe Biota and Its Constrains on the Age of the Upper Doushantuo δ13C Anomaly in the Yangtze Gorges Area, South China. Precambrian Research, 271: 243–253. https://doi.org/10.1016/j.precamres.2015.10.007

Charvet, J., 2013. The Neoproterozoic—Early Paleozoic Tectonic Evolution of the South China Block: An Overview. Journal of Asian Earth Sciences, 74: 198–209. https://doi.org/10.1016/j.jseaes.2013.02.015

Chen, C., Feng, Q., Gan, Z., 2020. Zircon U-Pb Ages and its Geological Significance of Tuffs between the Doushantuo and Liuchapo Formaion at Yangtou Section, Guizhou Province. Earth Science, 45(3): 880–891. https://doi.org/10.3799/dqkx.2019.103 (in Chinese with English Abstract)

Chen, D. Z., Wang, J. G., Qing, H. R., et al., 2009. Hydrothermal Venting Activities in the Early Cambrian, South China: Petrological, Geochronological and Stable Isotopic Constraints. Chemical Geology, 258(3/4): 168–181. https://doi.org/10.1016/j.chemgeo.2008.10.016

Chen, D. Z., Zhou, X. Q., Fu, Y., et al., 2015. New U-Pb Zircon Ages of the Ediacaran-Cambrian Boundary Strata in South China. Terra Nova, 27 (1): 62–68. https://doi.org/10.1111/ter.12134

Cohen, A. S., 2004. The rhenium-Osmium Isotope System: Applications to Geochronological and Palaeoenvironmental Problems. Journal of the Geological Society, 161(4): 729–734. https://doi.org/10.1144/0016-764903-084

Condon, D., Zhu, M. Y., Bowring, S., et al., 2005. U-Pb Ages from the Neoproterozoic Doushantuo Formation, China. Science, 308(5718): 95–98. https://doi.org/10.1126/science.1107765

Ding, Y., Chen, D. Z., Zhou, X. Q., et al., 2019. Tectono-Depositional Pattern and Evolution of the Middle Yangtze Platform (South China) during the Late Ediacaran. Precambrian Research, 333: 105426. https://doi.org/10.1016/j.precamres.2019.105426

Erwin, D. H., Laflamme, M., Tweedt, S. M., et al., 2011. The Cambrian Conundrum: Early Divergence and Later Ecological Success in the Early History of Animals. Science, 334(6059): 1091–1097. https://doi.org/10.1126/science.1206375

Feng, L. J., Li, C., Huang, J., et al., 2014. A Sulfate Control on Marine Mid-Depth Euxinia on the Early Cambrian (ca. 529-521 Ma) Yangtze Platform, South China. Precambrian Research, 246: 123–133. https://doi.org/10.1016/j.precamres.2014.03.002

Halverson, G. P., Shields-Zhou, G., 2011. Chapter 4 Chemostratigraphy and the Neoproterozoic Glaciations. In: Arnaud, E., Halverson, G. P., Shields-Zhou, G., eds., The Geological Record of Neoproterozoic Glaciations. Geological Society, London, Memoirs, 36(1): 51–66. https://doi.org/10.1144/m36.4

Han, T., Fan, H. F., Zhu, X. Q., et al., 2017. Submarine Hydrothermal Contribution for the Extreme Element Accumulation during the Early Cambrian, South China. Ore Geology Reviews, 86: 297–308. https://doi.org/10.1016/j.oregeorev.2017.02.030

Huang, T. Y., Chen, D. Z., Fu, Y., et al., 2019. Development and Evolution of a Euxinic Wedge on the Ferruginous Outer Shelf of the Early Cambrian Yangtze Sea. Chemical Geology, 524: 259–271. https://doi.org/10.1016/j.chemgeo.2019.06.024

Jenkins, R. J. F., Cooper, J. A., Compston, W., 2002. Age and Biostratigraphy of Early Cambrian Tuffs from SE Australia and Southern China. Journal of the Geological Society, 159(6): 645–658. https://doi.org/10.1144/0016-764901-127

Jiang, G. Q., Shi, X. Y., Zhang, S. H., et al., 2011. Stratigraphy and Paleogeography of the Ediacaran Doushantuo Formation (ca. 635-551 Ma) in South China. Gondwana Research, 19(4): 831–849. https://doi.org/10.1016/j.gr.2011.01.006

Jiang, G. Q., Sohl, L. E., Christie-Blick, N., 2003. Neoproterozoic Stratigraphic Comparison of the Lesser Himalaya (India) and Yangtze Block (South China): Paleogeographic Implications. Geology, 31(10): 917–920. https://doi.org/10.1130/g19790.1

Jiang, S. Y., Pi, D. H., Heubeck, C., et al., 2009. Early Cambrian Ocean Anoxia in South China. Nature, 459(7248): E5–E6; Discussion E6. https://doi.org/10.1038/nature08048

Kendall, B., Creaser, R. A., Selby, D., 2006. Re-Os Geochronology of Postglacial Black Shales in Australia: Constraints on the Timing of “Sturtian” Glaciation. Geology, 34(9): 729–732. https://doi.org/10.1130/g22775.1

Kendall, B., Creaser, R. A., Selby, D., 2009. 187Re-187Os Geochronology of Precambrian Organic-Rich Sedimentary Rocks. Geological Society, London, Special Publications, 326(1): 85–107. https://doi.org/10.1144/sp326.5

Levasseur, S., Birck, J. L., Allègre, C. J., 1998. Direct Measurement of Femtomoles of Osmium and the 187Os/186Os Ratio in Seawater. Science, 282(5387): 272–274. https://doi.org/10.1126/science.282.5387.272

Levasseur, S., Birck, J. L., Allègre, C. J., 1999. The Osmium Riverine Flux and the Oceanic Mass Balance of Osmium. Earth and Planetary Science Letters, 174(1/2): 7–23. https://doi.org/10.1016/s0012-821x(99)00259-9

Li, C., Love, G. D., Lyons, T. W., et al., 2010a. A Stratified Redox Model for the Ediacaran Ocean. Science, 328(5974): 80–83. https://doi.org/10.1126/science.1182369

Li, C., Qu, W. J., Zhou, L. M., et al., 2010b. Rapid Separation of Osmium by Direct Distillation with Carius Tube. Rock and Mineral Analysis, 29 (1): 14–16. https://doi.org/10.15898/j.cnki.11-2131/td.2010.01.001 (in Chinese with English Abstract)

Li, C., Shi, W., Cheng, M., et al., 2020. The Redox Structure of Ediacaran and Early Cambrian Oceans and Its Controls. Science Bulletin, 65(24): 2141–2149. https://doi.org/10.1016/j.scib.2020.09.023

Liu, Z. Q., Jiang, X. J., Li, C., et al., 2021. Metallogenic Age and Setting of Boka Gold Deposit Dongchuan: Evidence from Re-Os Isotope of Sulfide and Trace Element of Carbonaceous Slate. Earth Science, 46(12): 4260–4273. https://doi.org/10.3799/dqkx.2021.178 (in Chinese with English Abstract)

Mao, J. W., Lehmann, B., Du, A. D., et al., 2002. Re-Os Dating of Polymetallic Ni-Mo-PGE-Au Mineralization in Lower Cambrian Black Shales of South China and Its Geologic Significance. Economic Geology, 97(5): 1051–1061. https://doi.org/10.2113/gsecongeo.97.5.1051

Matsumoto, H., Kuroda, J., Coccioni, R., et al., 2020. Marine Os Isotopic Evidence for Multiple Volcanic Episodes during Cretaceous Oceanic Anoxic Event 1b. Scientific Reports, 10(1): 12601. https://doi.org/10.1038/s41598-020-69505-x

McDaniel, D. K., Walker, R. J., Hemming, S. R., et al., 2004. Sources of Osmium to the Modern Oceans: New Evidence from the 190Pt-186Os System. Geochimica et Cosmochimica Acta, 68(6): 1243–1252. https://doi.org/10.1016/j.gca.2003.08.020

Oxburgh, R., 1998. Variations in the Osmium Isotope Composition of Sea Water over the Past 200 000 Years. Earth and Planetary Science Letters, 159(3/4): 183–191. https://doi.org/10.1016/s0012-821x(98)00057-0

Peucker-Ehrenbrink, B., Ravizza, G., 2000. The Marine Osmium Isotope Record. Terra Nova, 12(5): 205–219. https://doi.org/10.1046/j.1365-3121.2000.00295.x

Ravizza, G., Peucker-Ehrenbrink, B., 2003. Chemostratigraphic Evidence of Deccan Volcanism from the Marine Osmium Isotope Record. Science, 302(5649): 1392–1395. https://doi.org/10.1126/science.1089209

Rooney, A. D., Macdonald, F. A., Strauss, J. V., et al., 2014. Re-Os Geochronology and Coupled Os-Sr Isotope Constraints on the Sturtian Snowball Earth. Proceedings of the National Academy of Sciences of the United States of America, 111(1): 51–56. https://doi.org/10.1073/pnas.1317266110

Rotich, E. K., Handler, M. R., Naeher, S., et al., 2020. Re-Os Geochronology and Isotope Systematics, and Organic and Sulfur Geochemistry of the Middle—Late Paleocene Waipawa Formation, New Zealand: Insights into Early Paleogene Seawater Os Isotope Composition. Chemical Geology, 536: 119473. https://doi.org/10.1016/j.chemgeo.2020.119473

Sawaki, Y., Ohno, T., Tahata, M., et al., 2010. The Ediacaran Radiogenic Sr Isotope Excursion in the Doushantuo Formation in the Three Gorges Area, South China. Precambrian Research, 176(1/2/3/4): 46–64. https://doi.org/10.1016/j.precamres.2009.10.006

Sharma, M., Wasserburg, G. J., 1997. Osmium in the Rivers. Geochimica et Cosmochimica Acta, 61(24): 5411–5416. https://doi.org/10.1016/s0016-7037(97)00329-3

Stein, R., 1990. Organic Carbon Content/Sedimentation Rate Relationship and Its Paleoenvironmental Significance for Marine Sediments. Geo-Marine Letters, 10(1): 37–44. https://doi.org/10.1007/bf02431020

Sun, P. C., Li, C., Zhou, L. M., et al., 2021. Dating Metallogenic Age of Jinding Pb-Zn Deposit in Yunnan: Evidence from Re-Os Isotope of Bitumen. Earth Science, 46(12):. 4247–4259. https://doi.org/10.3799/dqkx.2021.085

Tripathy, G. R., Singh, S. K., 2015. Re-Os Depositional Age for Black Shales from the Kaimur Group, Upper Vindhyan, India. Chemical Geology, 413: 63–72. https://doi.org/10.1016/j.chemgeo.2015.08.011

Turgeon, S. C., Creaser, R. A., Algeo, T. J., 2007. Re-Os Depositional Ages and Seawater Os Estimates for the Frasnian-Famennian Boundary: Implications for Weathering Rates, Land Plant Evolution, and Extinction Mechanisms. Earth and Planetary Science Letters, 261(3/4): 649–661. https://doi.org/10.1016/j.epsl.2007.07.031

Wang, X. Q., Shi, X. Y., Jiang, G. Q., et al., 2012. New U-Pb Age from the Basal Niutitang Formation in South China: Implications for Diachronous Development and Condensation of Stratigraphic Units across the Yangtze Platform at the Ediacaran-Cambrian Transition. Journal of Asian Earth Sciences, 48: 1–8. https://doi.org/10.1016/j.jseaes.2011.12.023

Wang, Y., Huang, Z. Q., Chen, H. D., et al., 2012. Stratigraphical Correlation of the Liuchapo Formation with the Dengying Formation in South China. Journal of Jilin University (Earth Science Edition), 42(S1): 328–335. https://doi.org/10.13278/j.cnki.jjuese.2012.s1.049 (in Chinese with English Abstract)

Wei, S. C., Fu, Y., Liang, H. P., et al., 2018. Re-Os Geochronology of the Cambrian Stage-2 and -3 Boundary in Zhijin County, Guizhou Province, China. Acta Geochimica, 37(2): 323–333. https://doi.org/10.1007/s11631-017-0228-5

Xu, L. G., Lehmann, B., Mao, J. W., et al., 2011. Re-Os Age of Polymetallic Ni-Mo-PGE-Au Mineralization in Early Cambrian Black Shales of South China—A Reassessment. Economic Geology, 106(3): 511–522. https://doi.org/10.2113/econgeo.106.3.511

Yamashita, Y., Takahashi, Y., Haba, H., et al., 2007. Comparison of Reductive Accumulation of Re and Os in Seawater-Sediment Systems. Geochimica et Cosmochimica Acta, 71(14): 3458–3475. https://doi.org/10.1016/j.gca.2007.05.003

Yang, C., Zhu, M. Y., Condon, D. J., et al., 2017. Geochronological Constraints on Stratigraphic Correlation and Oceanic Oxygenation in Ediacaran-Cambrian Transition in South China. Journal of Asian Earth Sciences, 140: 75–81. https://doi.org/10.1016/j.jseaes.2017.03.017

Zhou, C. M., Yuan, X. L., Xiao, S. H., et al., 2019. Ediacaran Integrative Stratigraphy and Timescale of China. Science China Earth Sciences, 62(1): 7–24. https://doi.org/10.1007/s11430-017-9216-2

Zhu, M. Y., Yang, A. H., Yuan, J. L., et al., 2019. Cambrian Integrative Stratigraphy and Timescale of China. Science China Earth Sciences, 62(1): 25–60. https://doi.org/10.1007/s11430-017-9291-0

Zhu, M., Zhuravlev, A. Y., Wood, R. A., et al., 2017. A Deep Root for the Cambrian Explosion: Implications of New Bio- and Chemostratigraphy from the Siberian Platform. Geology, 45(5): 459–462. https://doi.org/10.1130/g38865.1