New Re-Os isotopic constrains on the formation of the metalliferous deposits of the Lower Cambrian Niutitang formation

Journal of Earth Science - Tập 27 - Trang 271-281 - 2016
Yong Fu1,2, Lin Dong3, Chao Li4, Wenjun Qu4, Haoxiang Pei2, Wenlang Qiao5, Bing Shen3
1College of Resource and Environmental Engineering, Guizhou University, Guiyang, China
2Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing, China
3Key Laboratory of Orogenic Belts and Crustal Evolution, MOE; School of Earth and Space Science, Peking University, Beijing, China
4Re-Os lab, National Research Center for Geoanalysis, Chinese Academy of Geological Sciences, Beijing, China
5Institute of Guizhou Geological Survey, Guiyang, China

Tóm tắt

The Terreneuvian Epoch (541–521 Ma)is also an important period for metallogenesis in South China, as was represented by the widespread occurrences of Ni-Mo polymetallic layers on the antecedent shallow platform margin and the V-enriched black shales in deeper slope-basin settings. In this study, we have measured Re-Os isochron ages of Ni-Mo polymetallic layers (Songlin, Niuchang, Sancha, Chuanpengwan), V-rich black shales (Bahuang), and non-metalliferous black shales (Shuidong) in the basal Niutitang Formation in Guizhou and Hunan province, South China. The Ni-Mo polymetallic layers and V-enriched black shales have similar Re-Os isochron ages, suggesting concurrent deposition of these two types of metalliferous ores. This suggestion is consistent with the traditional stratigraphic correlation by using the nodular phosphorite bed directly underlying these metalliferous layers as a stratigraphic marker. Furthermore, the metalliferous ores and non-metalliferous black shales have similar initial 187Os/188Os ratios of 0.8–0.9, arguing for a dominant seawater origin with minor contribution of hydrothermal activity. Furthermore, Re-Os isotopic data also imply that Ni-Mo and V ore might have derived from the same source. We suggest that the spatial distribution of metalliferous ores can be explained by the development of non-sulfidic anoxic-suboxic wedge (NSASW) in the slope-basin and sulfidic wedge in the previous platform margin. Upwelling of deep water first transects the mildly reduced, organic rich NSASW, in which V (V) is reduced to V (IV), and is preferentially removed from seawater by organometallic complex formation. As a result, V-rich black shale deposits in the slope-basin of Yangtze Platform. Further movement of deep water into the sulfidic platform margin results in Ni-Mo polymetallic layer formation.

Tài liệu tham khảo

Achterberg, E. P., Van Den Berg, C. M. G., 1997. Chemical Speciation of Chromium and Nickel in the Western Mediterranean. Deep Sea Research Part II: Topical Studies in Oceanography, 44(3–4): 693–720 Achterberg, E. P., van den Berg, C. M. G., Boussemart, M., et al., 1997. Speciation and Cycling of Trace Metals in Esthwaite Water: A Productive English Lake with Seasonal Deep-Water Anoxia. Geochimica et Cosmochimica Acta, 61(24): 5233–5253 Adelson, J. M., Helz, G. R., Miller, C. V., 2001. Reconstructing the Rise of Recent Coastal Anoxia, Molybdenum in Chesapeake Bay Sediments. Geochimica et Cosmochimica Acta, 65(2): 237–252 Algeo, T. J., Maynard, J. B., 2004. Trace-Element Behavior and Redox Facies in Core Shales of Upper Pennsylvanian Kansas-Type Cyclothems. Chemical Geology, 206(3–4): 289–318 Bao, Z. X., Wan, R. J., Bao, J. M., 2002. Vanadium Deposits of Black Shale in Upper Yangtze Platform. Yunnan Geology, 21: 175–182 Brasier, M., Cowie, J., Taylor, M., 1994. Decision on the Precambrian-Cambrian Boundary Stratotype. Episodes, 17(1–2): 95–100 Breit, G. N., Wanty, R. B., 1991. Vanadium Accumulation in Carbonaceous Rocks: A Review of Geochemical Controls During Deposition and Diagenesis. Chemical Geology, 91(2): 83–97 Chen, D., Zhou, X., Fu, Y., et al., 2015. New U–Pb Zircon Ages of the Ediacaran-Cambrian Boundary Strata in South China. Terra Nova, 27(1): 62–68 Chen, Y., Jiang, S., Ling, H., et al., 2003. Pb–Pb Isotope Dating of Black Shales from the Lower Cambrian Niutitang Formation, Guizhou Province, South China. Progress in Natural Science, 13: 771–776 Cohen, A. S., Coe, A. L., Bartlett, J. M., et al., 1999. Precise Re–Os Ages of Organic-Rich Mudrocks and the Os Isotope Composition of Jurassic Seawater. Earth and Planetary Science Letters, 167(3–4): 159–173 Cohen, K. M., Finney, S. C., Gibbard, P. L., et al., 2013. the ICS International Chronostratigraphic Chart. Episodes, 36: 199–204 Conway Morris, S., 1989. Burgess Shale Faunas and the Cambrian Explosion. Science, 246: 339–346 Du, A., He, H., Yin, W., et al., 2010. A Study on the Rhenium-Osmium Geochronometry of Molybdenites. Acta Geologica Sinica (English Edition), 68: 339–347 Du Vivier, A. D. C., Selby, D., Sageman, B. B., et al., 2014. Marine 187Os/188Os Isotope Stratigraphy Reveals the Interaction of Volcanism and Ocean Circulation during Oceanic Anoxic Event 2. Earth and Planetary Science Letters, 389(0): 23–33 Feng L., Li C., Huang J., et al., 2010. A Sulfate Control on Marine Mid-Depth Euxinia on the Early Cambrian (ca. 529–521 Ma) Yangtze Platform, South China. Precambrian Research, 246: 123–133 Gould, S. J., 1989. Wonderful Life: The Burgess Shale and the Nature of History. Norton, New York. 347 Guo, Q., Shields, G. A., Liu, C., et al., 2007. Trace Element Chemostratigraphy of Two Ediacaran-Cambrian Successions in South China: Implications for Organosedimentary Metal Enrichment and Silicification in the Early Cambrian. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1–2): 194–216 Huerta-Diaz, M. A., Morse, J. W., 1992. Pyritization of Trace Metals in Anoxic Marine Sediments. Geochimica et Cosmochimica Acta, 56(7): 2681–2702 Jiang, S. Y., Yang, J. H., Ling, H. F., et al., 2007a. Extreme Enrichment of Polymetallic Ni-Mo-PGE-Au in Lower Cambrian Black Shales of South China: An Os Isotope and PGE Geochemical Investigation. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1–2): 217–228 Jiang, S. Y., Zhao, H. X., Chen, Y. Q., et al., 2007b. Trace and Rare Earth Element Geochemistry of Phosphate Nodules from the Lower Cambrian Black Shale Sequence in the Mufu Mountain of Nanjing, Jiangsu Province, China. Chemical Geology, 244(3–4): 584–604 Jiang, S. Y., Zhao, K. D., Li, L., et al., 2007c. Highly Metalliferous Carbonaceous Shale and Early Cambrian Seawater: Comment and Replay: Comment. Geology, 35(1): e158–e159 Jiang, S. Y., Pi, D. H., Heubeck, C., et al., 2009. Early Cambrian Ocean Anoxia in South China. Nature, 459(7248): E5–E6 Jiang, S., Yang, J., Ling, H., et al., 2003. Re-Os Isotopes and PGE Geochemistry of Black Shales and Intercalated Ni-Mo Polymetallic Sulfide Bed from the Lower Cambrian Niutitang Formation, South China. Progress in Natural Science, 13: 788–794 Kendall, B., Creaser, R. A., Selby, D., 2006. Re-Os Geochronology of Postglacial Black Shales in Australia: Constraints on the Timing of “Sturtian” Glaciation. Geology, 34: 729–732 Kendall, B., Creaser, R. A., Gordon, G. W., et al., 2009. Re–Os and Mo Isotope Systematics of Black Shales from the Middle Proterozoic Velkerri and Wollogorang Formations, McArthur Basin, Northern Australia. Geochim. Cosmochim. Acta, 73: 2534–2558 Lehmann, B., Nägler, T. F., Holland, H. D., et al., 2007. Highly Metalliferous Carbonaceous Shale and Early Cambrian Seawater. Geology, 35: 403–406 Li, C., Qu, W.,Du, A., 2009. Comprehensive Study on Extraction of Rhenium with Acetone in Re-Os Isotopic Dating. Rock and Mineral Analysis, 28: 233–238 Li, C., Qu, W., Zhou, L., et al., 2010. Rapid Separation of Osmium by Direct Distillation with Carius Tube. Rock and Mineral Analysis, 29: 14–16 Li, S., Xiao, Q., Shen, J., et al., 2002. Re-Os Isotopic Constraints on the Source and Age of Lower Cambrian Platinum Group Element Ores in Hunan and Guizhou. Science in China (Series D), 32(7): 568–575 (in Chinese) Maloof, A. C., Porter, S. M., Moore, J. L., et al., 2010. The Earliest Cambrian Record of Animals and Ocean Geochemical Change. Geological Society of America Bulletin, 122(11–12): 1731–1774 Mao, J., Lehmann, B., Du, A., et al., 2002. Re-Os Dating of Polymetallic Ni-Mo-PGE-Au Mineralization in Lower Cambrian Black Shales of South China and Its Geologic Significance. Economic Geology, 97(5): 1051–1061 Marshall, C. R., 2006. Explaining the Cambrian “explosion” of Animals. Annual Review of Earth and Planetary Sciences, 34: 355–384 Morse, J. W., Luther Iii, G. W., 1999. Chemical Influences on Trace Metal-Sulfide Interactions in Anoxic Sediments. Geochimica et Cosmochimica Acta, 63(19–20): 3373–3378 Narbonne, G. M., Myrow, P., 1988. Trace Fossil Biostratigraphy in the the Precambrian-Cambrian Boundary Interval. New York State Museum Bulletin, 463: 72–76 Och, L. M., Shields-Zhou, G. A., Poulton, S. W., et al., 2013. Redox Changes in Early Cambrian Black Shales at Xiaotan Section, Yunnan Province, South China. Precambrian Research, 225: 166–189 Orberger, B., Vymazalova, A., Wagner, C., et al., 2007. Biogenic Origin of Intergrown Mo-Sulphide- and Carbonaceous Matter in Lower Cambrian Black Shales (Zunyi Formation, southern China). Chemical Geology, 238(3–4): 213–231 Oxburgh, R., 2001. Residence Time of Osmium in the Oceans. Geochemistry, Geophysics, Geosystems, 2: 2000GC000104 Pegram, W. J., Esser, B. K., Krishnaswami, S., et al., 1994. The Isotopic Composition of Leachable Osmium from River Sediments. Earth and Planetary Science Letters, 128(3–4): 591–599 Peucker-Ehrenbrink, B., Ravizza, G., 2000. The Marine Osmium Isotope Record. Terra Nova, 12: 205–219 Pi, D. H., Liu, C. Q., Zhou, G. A., et al., 2013. Trace and Rare Earth Element Geochemistry of Black Shale and Kerogen in the Early Cambrian Niutitang Formation in Guizhou Province, South China: Constraints for Redox Environments and Origin of Metal Enrichments. Precambrian Research, 225: 218–229 Qu, W., Du, A., 2003. Highly Precise Re-Os Dating of Molybdenite by ICP-MS with Carius Tube Sample Digestion. Rock and Mineral Analysis, 22: 254–257 Rooney, A. D., Chew, D. M., Selby, D., 2011. Re-Os Geochronology of the Neoproterozoic-Cambrian Dalradian Supergroup of Scotland and Ireland: Implications for Neoproterozoic Stratigraphy, Glaciations and Re-Os Systematics. Precambrian Research, 185(3–4): 202–214 Sharma, M., Papanastassiou, D. A., Wasserburg, G. J., 1997. The Concentration and Isotopic Composition of Osmium in the Oceans. Geochimica et Cosmochimica Acta, 61(16): 3287–3299 Sharma, M., Wasserburg, G. J., 1997. Osmium in the Rivers. Geochimica et Cosmochimica Acta, 61(24): 5411–5416 Sharma, M., Wasserburg, G. J., Hofmann, A. W., et al., 1999. Himalayan Uplift and Osmium Isotopes in Oceans and Rivers. Geochimica et Cosmochimica Acta, 63(23–24): 4005–4012 Sharma, M., Wasserburg, G. J., Hofmann, A. W., et al., 2000. Osmium Isotopes in Hydrothermal Fluids from the Juan de Fuca Ridge. Earth and Planetary Science Letters, 179(1): 139–152 Shu, D., 2008. Cambrian Explosion: Birth of Tree of Animals. Gondwana Research, 14(1–2): 219–240 Singh, S. K., Trivedi, J. R., Krishnaswami, S., 1999. Re-Os Isotope Systematics in Black Shales from the Lesser Himalaya: Their Chronology and Role in the 187Os/188Os Evolution of Seawater. Geochimica et Cosmochimica Acta, 63(16): 2381–2392 Su, D. Y., Wu, Z. C., Zhang, M. Q., et al., 2012. Geological Characteristics and Metallogenic Prediction of Vanadium Deposit in Northeast Guizhou. Guizhou Geology, 29: 173–182 Templeton III, G. D., Chasteen, N. D., 1980. Vanadium-Fulvic Acid Chemistry: Conformational and Binding Studies by Electron Spin Probe Techniques. Geochimica et Cosmochimica Acta, 44(5): 741–752 Turgeon, S. C., Creaser, R. A., 2008. Cretaceous Oceanic Anoxic Event 2 Triggered by a Massive Magmatic Episode. Nature, 454(7202): 323–326 Wang Y., Wang X. L., Wang Y., 2015. Cambrian Ichnofossils from the Zhoujieshan Formation (Quanji Group) Overlying Tillites in the Northern Margin of the Qaidam Basin, NW China.Journal of Earth Science, 26(2): 203–210 Wang, J., Chen, D., Wang, D. A. N., et al., 2012. Petrology and Geochemistry of Chert on the Marginal Zone of Yangtze Platform, Western Hunan, South China, during the Ediacaran-Cambrian Transition. Sedimentology, 59(3): 809–829 Wang, J., Chen, D., Yan, D., et al., 2012. Evolution from an Anoxic to Oxic Deep Ocean during the Ediacaran-Cambrian Transition and Implications for Bioradiation. Chemical Geology, 306–307: 129–138 Wang, X., Shi, X., Jiang, G., et al., 2012. New U-Pb Age from the Basal Niutitang Formation in South China: Implications for Diachronous Development and Condensation of Stratigraphic Units across the Yangtze Platform at the Ediacaran-Cambrian Transition. Journal of Asian Earth Sciences, 48(0): 1–8 Wanty, R. B., Goldhaber, M. B., 1992. Thermodynamics and Kinetics of Reactions Involving Vanadium in Natural Systems: Accumulation of Vanadium in Sedimentary Rocks. Geochimica et Cosmochimica Acta, 56(4): 1471–1483 Wehrli, B., Stumm, W., 1989. Vanadyl in Natural Waters: Adsorption and Hydrolysis Promote Oxygenation. Geochimica et Cosmochimica Acta, 53(1): 69–77 Wilson, S. A., Weber, J. H., 1979. An EPR Study of the Reduction of Vanadium(V) to Vanadium(IV) by Fulvic Acid. Chemical Geology, 26(3–4): 345–354 Woodhouse, O. B., Ravizza, G., Kenison Falkner, K., et al., 1999. Osmium in Seawater: Vertical Profiles of Concentration and Isotopic Composition in the Eastern Pacific Ocean. Earth and Planetary Science Letters, 173(3): 223–233 Xu, L., Lehmann, B., Mao, J., et al., 2011. Re-Os Age of Polymetallic Ni-Mo-PGE-Au Mineralization in Early Cambrian Black Shales of South China-A Reassessment. Economic Geology, 106(3): 511–522 Xu, L., Lehmann, B., Mao, J., 2013. Seawater Contribution to Polymetallic Ni-Mo-PGE-Au Mineralization in Early Cambrian Black Shales of South China: Evidence from Mo Isotope, PGE, Trace Element, and REE Geochemistry. Ore Geology Reviews, 52: 66–84 Yang, J. H., Jiang, S. Y., Ling, H. F., et al., 2004. Paleoceangraphic Significance of Redox-Sensitive Metals of Black Shales in the Basal Lower Cambrian Niutitang Formation in Guizhou Province, South China. Progress in Natural Science, 14: 152–157 Yang, Y. F., Xu, Y. F., Zhou, C. Y., 2009. Discussion of the Relation Between Liuchapo Formation and Dengying Formation of Upper Yantze Platform. Guizhou Geology, 4: 248–252 (in Chinese with English Abstract) Zhou, C., Jiang, S. Y., 2009. Palaeoceanographic Redox Environments for the Lower Cambrian Hetang Formation in South China: Evidence from Pyrite Framboids, Redox Sensitive Trace Elements, and Sponge Biota Occurrence. Palaeogeography, Palaeoclimatology, Palaeoecology, 271(3–4): 279–286 Zhou, M., Luo, T., Li, Z., et al., 2010. SHRIMP U-Pb Zircon Age of Tuff at the Bottom of the Lower Cambrian Niutitang Formation, Zunyi, South China. Chinese Science Bulletin, 53(4): 576–583 Zhu, B., Becker, H., Jiang, S. Y., et al., 2013. Re–Os Geochronology of Black Shales from the Neoproterozoic Doushantuo Formation, Yangtze Platform, South China. Precambrian Research, 225(0): 67–76 Zhu, M. Y., Zhang, J. M., Steiner, M., et al., 2003. Sinian-Cambrian Stratigraphic Framework for Shallow- to Deep-Water Environments of the Yangtze Platform: an Integrated Approach. Progress in Natural Science, 13: 351–960