Evidence for volcanism and weathering during the Permian-Triassic mass extinction from Meishan (South China) osmium isotope record
Tài liệu tham khảo
Birck, 1997, Re-Os isotopic measurements at the femtomole level in natural samples, Geostand. Newslett., 21, 19, 10.1111/j.1751-908X.1997.tb00528.x
Burgess, 2015, High-precision geochronology confirms voluminous magmatism before, during, and after Earth’s most severe extinction, Sci. Adv., 1, 10.1126/sciadv.1500470
Burgess, 2014, High-precision timeline for Earth’s most severe extinction, Proc. Natl. Acad. Sci., 111, 3316, 10.1073/pnas.1317692111
Burgess, 2017, Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction, Nat. Commun., 8, 164, 10.1038/s41467-017-00083-9
Cao, 2009, Biogeochemical evidence for euxinic oceans and ecological disturbance presaging the end-Permian mass extinction event, Earth Planet. Sci. Lett., 281, 188, 10.1016/j.epsl.2009.02.012
Charles, 2011, Constraints on the numerical age of the Paleocene-Eocene boundary, Geochem. Geophys. Geosyst., 12, 10.1029/2010GC003426
Chen, 2016, High-resolution SIMS oxygen isotope analysis on conodont apatite from South China and implications for the end-Permian mass extinction, Palaeogeogr. Palaeoclimatol. Palaeoecol., 448, 26, 10.1016/j.palaeo.2015.11.025
Cohen, 2004, The rhenium–osmium isotope system: applications to geochronological and palaeoenvironmental problems, J. Geol. Soc., 161, 729, 10.1144/0016-764903-084
Cohen, 1996, Separation of osmium from geological materials by solvent extraction for analysis by thermal ionisation mass spectrometry, Anal. Chim. Acta, 332, 269, 10.1016/0003-2670(96)00226-7
Cohen, 2004, Osmium isotope evidence for the regulation of atmospheric CO2 by continental weathering, Geology, 32, 157, 10.1130/G20158.1
Cui, 2015, Global warming and the end-Permian extinction event: proxy and modeling perspectives, Earth Sci. Rev., 149, 5, 10.1016/j.earscirev.2014.04.007
Cui, 2011, Slow release of fossil carbon during the Palaeocene–Eocene thermal maximum, Nat. Geosci., 4, 481, 10.1038/ngeo1179
Dickson, 2015, Evidence for weathering and volcanism during the PETM from Arctic Ocean and Peri-Tethys osmium isotope records, Palaeogeogr. Palaeoclimatol. Palaeoecol., 438, 300, 10.1016/j.palaeo.2015.08.019
Dudás, 2017, A conodont-based revision of the 87Sr/86Sr seawater curve across the Permian-Triassic boundary, Palaeogeogr. Palaeoclimatol. Palaeoecol., 470, 40, 10.1016/j.palaeo.2017.01.007
Dunkley Jones, 2013, Climate model and proxy data constraints on ocean warming across the Paleocene–Eocene thermal Maximum, Earth Sci. Rev., 125, 123, 10.1016/j.earscirev.2013.07.004
Erwin, 2006
Garbelli, 2017, Biomineralization and global change: a new perspective for understanding the end-Permian extinction, Geology, 45, 19, 10.1130/G38430.1
Georgiev, 2011, Hot acidic late Permian seas stifle life in record time, Earth Planet. Sci. Lett., 310, 389, 10.1016/j.epsl.2011.08.010
Georgiev, 2015, Enhanced recycling of organic matter and Os-isotopic evidence for multiple magmatic or meteoritic inputs to the late Permian Panthalassic Ocean, Opal Creek, Canada, Geochim. Cosmochim. Acta, 150, 192, 10.1016/j.gca.2014.11.019
Grasby, 2016, Mercury anomalies associated with three extinction events (Capitanian Crisis, latest Permian extinction and the Smithian/Spathian Extinction) in NW Pangea, Geol. Mag., 153, 285, 10.1017/S0016756815000436
Grice, 2005, Photic Zone Euxinia during the Permian-Triassic superanoxic event, Science, 307, 706, 10.1126/science.1104323
Gutjahr, 2017, Very large release of mostly volcanic carbon during the Palaeocene–Eocene thermal maximum, Nature, 548, 573, 10.1038/nature23646
Hinojosa, 2012, Evidence for end-Permian Ocean acidification from calcium isotopes in biogenic apatite, Geology, 40, 743, 10.1130/G33048.1
Jenkyns, 2010, Geochemistry of oceanic anoxic events, Geochem. Geophys. Geosyst., 11, 10.1029/2009GC002788
Jin, 2006, The global boundary stratotype section and point (GSSP) for the base of changhsingian stage (Upper Permian), Episodes, 29, 175, 10.18814/epiiugs/2006/v29i3/003
Joachimski, 2012, Climate warming in the latest Permian and the Permian–Triassic mass extinction, Geology, 40, 195, 10.1130/G32707.1
Katz, 1999, The source and fate of massive carbon Input during the latest paleocene thermal maximum, Science, 286, 1531, 10.1126/science.286.5444.1531
Kendall, 2004, Constraints on the timing of Marinoan “Snowball Earth” glaciation by 187Re–187Os dating of a neoproterozoic, post-glacial black shale in Western Canada, Earth Planet. Sci. Lett., 222, 729, 10.1016/j.epsl.2004.04.004
Korte, 2010, Carbon-isotope stratigraphy across the Permian–Triassic boundary: a review, J. Asian Earth Sci., 39, 215, 10.1016/j.jseaes.2010.01.005
Kump, 2018, Prolonged Late Permian–Early Triassic hyperthermal: failure of climate regulation?, Phil. Trans. R. Soc. A, 376, 20170078, 10.1098/rsta.2017.0078
Liu, 2017, Zinc isotope evidence for intensive magmatism immediately before the end-Permian mass extinction, Geology, 45, 343, 10.1130/G38644.1
Liu, 2019, Osmium-isotope evidence for volcanism across the Wuchiapingian–Changhsingian boundary interval, Chem. Geol., 529, 119313, 10.1016/j.chemgeo.2019.119313
Payne, 2007, Evidence for recurrent early Triassic massive volcanism from quantitative interpretation of carbon isotope fluctuations, Earth Planet. Sci. Lett., 256, 264, 10.1016/j.epsl.2007.01.034
Peucker-Ehrenbrink, 2000, Effects of black shale weathering on the mobility of rhenium and platinum group elements, Geology, 28, 475, 10.1130/0091-7613(2000)28<475:EOBSWO>2.0.CO;2
Peucker-Ehrenbrink, 2000, The marine osmium isotope record, Terra Nova, 12, 205, 10.1046/j.1365-3121.2000.00295.x
Ravizza, 1989, Application of the 187Re-187Os system to black shale geochronometry, Geochim. Cosmochim. Acta, 53, 3257, 10.1016/0016-7037(89)90105-1
Ravizza, 1992, The osmium isotopic composition of organic-rich marine sediments, Earth Planet. Sci. Lett., 110, 1, 10.1016/0012-821X(92)90034-S
Ravizza, 2001, An osmium isotope excursion associated with the late Paleocene thermal maximum: evidence of intensified chemical weathering, Paleoceanography, 16, 155, 10.1029/2000PA000541
Rooney, 2016, Tracking millennial-scale Holocene glacial advance and retreat using osmium isotopes: Insights from the Greenland ice sheet, Quat. Sci. Rev., 138, 49, 10.1016/j.quascirev.2016.02.021
Saunders, 2009, The Siberian Traps and the End-Permian mass extinction: a critical review, Chin. Sci. Bull., 54, 20, 10.1007/s11434-008-0543-7
Schoepfer, 2013, Termination of a continent-margin upwelling system at the Permian–Triassic boundary (Opal Creek, Alberta, Canada), Glob. Planet. Chang., 105, 21, 10.1016/j.gloplacha.2012.07.005
Selby, 2003, Re–Os geochronology of organic rich sediments: an evaluation of organic matter analysis methods, Chem. Geol., 200, 225, 10.1016/S0009-2541(03)00199-2
Selby, 2007, Re–Os elemental and isotopic systematics in crude oils, Geochim. Cosmochim. Acta, 71, 378, 10.1016/j.gca.2006.09.005
Shen, 2011, Calibrating the End-Permian mass extinction, Science, 334, 1367, 10.1126/science.1213454
Shen, 2013, Volcanism in South China during the late Permian and its relationship to marine ecosystem and environmental changes, Glob. Planet. Chang., 105, 121, 10.1016/j.gloplacha.2012.02.011
Shen, 2019, Evidence for a prolonged Permian–Triassic extinction interval from global marine mercury records, Nat. Commun., 10, 1563, 10.1038/s41467-019-09620-0
Shen, 2019, A sudden end-Permian mass extinction in South China, GSA Bull., 131, 205, 10.1130/B31909.1
Smoliar, 1996, Re-Os ages of group IIA, IIIA, IVA, and IVB iron meteorites, Science, 271, 1099, 10.1126/science.271.5252.1099
Song, 2015, Integrated Sr isotope variations and global environmental changes through the late Permian to early late Triassic, Earth Planet. Sci. Lett., 424, 140, 10.1016/j.epsl.2015.05.035
Sun, 2012, Lethally hot temperatures during the early triassic greenhouse, Science, 338, 366, 10.1126/science.1224126
Sun, 2018, Rapid enhancement of chemical weathering recorded by extremely light seawater lithium isotopes at the Permian–Triassic boundary, Proc. Natl. Acad. Sci., 115, 3782, 10.1073/pnas.1711862115
Svensen, 2009, Siberian gas venting and the end-Permian environmental crisis, Earth Planet. Sci. Lett., 277, 490, 10.1016/j.epsl.2008.11.015
Turgeon, 2008, Cretaceous oceanic anoxic event 2 triggered by a massive magmatic episode, Nature, 454, 323, 10.1038/nature07076
Walker, 1981, A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature, J. Geophys. Res. Oceans, 86, 9776, 10.1029/JC086iC10p09776
Wang, 2000, Permian palaeogeographic evolution of the Jiangnan Basin, South China, Palaeogeogr. Palaeoclimatol. Palaeoecol., 160, 35, 10.1016/S0031-0182(00)00043-2
Wang, 2018, Mercury anomalies across the end Permian mass extinction in South China from shallow and deep water depositional environments, Earth Planet. Sci. Lett., 496, 159, 10.1016/j.epsl.2018.05.044
Yang, 2004, Re-Os dating of mo-bearing black shale of the laoyaling deposit, Tongling, Anhui Province, China, Chin. Sci. Bull., 49, 1396, 10.1360/03wd0325
Yin, 2001, The global stratotype section and point (GSSP) of the Permian-Triassic boundary, Episodes, 24, 102, 10.18814/epiiugs/2001/v24i2/004
Yin, 2014, The end-Permian regression in South China and its implication on mass extinction, Earth Sci. Rev., 137, 19, 10.1016/j.earscirev.2013.06.003
Yuan, 2014, Revised conodont-based integrated high-resolution timescale for the Changhsingian Stage and end-Permian extinction interval at the Meishan sections, South China, Lithos, 204, 220, 10.1016/j.lithos.2014.03.026
Zachos, 2003, A transient rise in tropical sea surface temperature during the paleocene-eocene thermal maximum, Science, 302, 1551, 10.1126/science.1090110
Zhang, 2014, Origins of microspherules from the Permian–Triassic boundary event layers in South China, Lithos, 204, 246, 10.1016/j.lithos.2014.02.018
Zhao, 2015, Enrichment mechanism of Re-Os in limestone from changxing permian-triassic boundary in Zhejiang, Acta Geol. Sin., 89, 1783
Ziegler, 1997, Permian world topography and climate, 111