Preparation, characterization and optimization of sildenafil citrate loaded PLGA nanoparticles by statistical factorial design

DARU Journal of Pharmaceutical Sciences - Tập 21 - Trang 1-10 - 2013
Elham Ghasemian1, Alireza Vatanara1, Abdolhossein Rouholamini Najafabadi1, Mohammad Reza Rouini1, Kambiz Gilani1, Majid Darabi1
1Pharmaceutics Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran

Tóm tắt

The objective of the present study was to formulate and optimize nanoparticles (NPs) of sildenafil-loaded poly (lactic-co-glycolic acid) (PLGA) by double emulsion solvent evaporation (DESE) method. The relationship between design factors and experimental data was evaluated using response surface methodology. A Box-Behnken design was made considering the mass ratio of drug to polymer (D/P), the volumetric proportion of the water to oil phase (W/O) and the concentration of polyvinyl alcohol (PVA) as the independent agents. PLGA-NPs were successfully prepared and the size (nm), entrapment efficiency (EE), drug loading (DL) and cumulative release of drug from NPs post 1 and 8 hrs were assessed as the responses. The NPs were prepared in a spherical shape and the sizes range of 240 to 316 nm. The polydispersity index of size was lower than 0.5 and the EE (%) and DL (%) varied between 14-62% and 2-6%, respectively. The optimized formulation with a desirability factor of 0.9 was selected and characterized. This formulation demonstrated the particle size of 270 nm, EE of 55%, DL of 3.9% and cumulative drug release of 79% after 12 hrs. In vitro release studies showed a burst release at the initial stage followed by a sustained release of sildenafil from NPs up to 12 hrs. The release kinetic of the optimized formulation was fitted to Higuchi model. Sildenafil citrate NPs with small particle size, lipophilic feature, high entrapment efficiency and good loading capacity is produced by this method. Characterization of optimum formulation, provided by an evaluation of experimental data, showed no significant difference between calculated and measured data.

Tài liệu tham khảo

Jung SY, Seo YG, Kim GK, Woo JS, Yong CS, Choi HG: Comparison of the solubility and pharmacokinetics of sildenafil salts. Arch Pharm Res. 2011, 34: 451-454. 10.1007/s12272-011-0313-y.

Rosano GM, Aversa A, Vitale C, Fabbri A, Fini M, Spera G: Chronic treatment with tadalafil improves endothelial function in men with increased cardiovascular risk. Eur Urol. 2005, 47: 214-220. 10.1016/j.eururo.2004.10.002. discussion 220–212

Sharma R: Novel phosphodiesterase-5 inhibitors: current indications and future directions. Indian J Med Sci. 2007, 61: 667-679. 10.4103/0019-5359.37789.

Yildiz P: Molecular mechanisms of pulmonary hypertension. Clin Chim Acta. 2009, 403: 9-16. 10.1016/j.cca.2009.01.018.

Fraisse A, Butrous G, Taylor MB, Oakes M, Dilleen M, Wessel DL: Intravenous sildenafil for postoperative pulmonary hypertension in children with congenital heart disease. Intensive Care Med. 2011, 37: 502-509. 10.1007/s00134-010-2065-4.

McLaughlin VV, Archer SL, Badesch DB, Barst RJ, Farber HW, Lindner JR, Mathier MA, McGoon MD, Park MH, Rosenson RS: ACCF/AHA 2009 expert consensus document on pulmonary hypertension: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association: developed in collaboration with the American College of Chest Physicians, American Thoracic Society, Inc., and the Pulmonary Hypertension Association. Circulation. 2009, 119: 2250-2294.

Shah V, Sharma M, Parmar V, Upadhyay U: Formulation of sildenafil citrate loaded nasal microsphers: an in vitro, ex vivo characterization. Int J Drug Del. 2010, 2: 213-220. 10.5138/ijdd.2010.0975.0215.02031.

Ryde TA, Hovey DC, Bosch HW: Novel compositions of sildenafil free base. In Book Novel compositions of sildenafil free base (Editor ed.^eds.). 2004, City: Google Patents

Filipcsei G, Otvos Z, Pongrácz K, Darvas F: Nanostructured Sildenafil base, its pharmaceutically acceptable salts and co-crystals, compositions of them, process for the preparation thereof and pharmaceutical compositions containing them. Book Nanostructured Sildenafil base, its pharmaceutically acceptable salts and co-crystals, compositions of them, process for the preparation thereof and pharmaceutical compositions containing them. 2010, City: Google Patents

Ryde TA, Hovey DC, Bosch WH: Novel compositions of Sildenafil free base. Book Novel compositions of Sildenafil free base. 2008, City: EP Patent, 1,658,053

Ungaro F, d’Angelo I, Miro A, La Rotonda MI, Quaglia F: Engineered PLGA nano- and micro-carriers for pulmonary delivery: challenges and promises. J Pharm Pharmacol. 2012, 64: 1217-1235. 10.1111/j.2042-7158.2012.01486.x.

Zou W, Liu C, Chen Z, Zhang N: Studies on bioadhesive PLGA nanoparticles: a promising gene delivery system for efficient gene therapy to lung cancer. Int J Pharm. 2009, 370: 187-195. 10.1016/j.ijpharm.2008.11.016.

Danhier F, Ansorena E, Silva JM, Coco R, Le-Breton A, Preat V: PLGA-based nanoparticles: an overview of biomedical applications. J Control Release. 2012, 161: 505-522. 10.1016/j.jconrel.2012.01.043.

Lamprecht A, Ubrich N, Hombreiro Perez M, Lehr C, Hoffman M, Maincent P: Influences of process parameters on nanoparticle preparation performed by a double emulsion pressure homogenization technique. Int J Pharm. 2000, 196: 177-182. 10.1016/S0378-5173(99)00422-6.

Badwan AA, Nabuls L, Al-Omari MM, Daraghmeh N, Ashour M: Sildenafil Citrate. Analytical Profiles of Drug Substances and Excipients. Volume 27. Edited by: Harry GB. 2001, Amman, Jordan: Academic Press, 339-376.

Beck-Broichsitter M, Kleimann P, Gessler T, Seeger W, Kissel T, Schmehl T: Nebulization performance of biodegradable sildenafil-loaded nanoparticles using the Aeroneb Pro: formulation aspects and nanoparticle stability to nebulization. Int J Pharm. 2012, 422: 398-408. 10.1016/j.ijpharm.2011.10.012.

Yang Y, Chung T, Ng N: Morphology, drug distribution, and in vitro release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. Biomaterials. 2001, 22: 231-241. 10.1016/S0142-9612(00)00178-2.

Jelvehgari M, Nokhodchi A, Rezapour M, Valizadeh H: Effect of formulation and processing variables on the characteristics of tolmetin microspheres prepared by double emulsion solvent diffusion method. Indian J Pharm Sci. 2010, 72: 72-78. 10.4103/0250-474X.62251.

Meng FT, Ma GH, Liu YD, Qiu W, Su ZG: Microencapsulation of bovine hemoglobin with high bio-activity and high entrapment efficiency using a W/O/W double emulsion technique. Colloids Surf B Biointerfaces. 2004, 33: 177-183. 10.1016/j.colsurfb.2003.10.003.

Beck-Broichsitter M, Schmehl T, Gessler T, Seeger W, Kissel T: Development of a biodegradable nanoparticle platform for sildenafil: formulation optimization by factorial design analysis combined with application of charge-modified branched polyesters. J Control Release. 2012, 157: 469-477. 10.1016/j.jconrel.2011.09.058.