Prediction of superhard carbon allotropes from the segment combination method

Journal of Superhard Materials - Tập 34 - Trang 386-399 - 2013
Ch. He1,2, L. Z. Sun1,2, J. Zhong1,2
1Laboratory for Quantum Engineering and Micro-Nano Energy Technology, Xiangtan University, Xiangtan, China
2Hunan Provincial Key Laboratory of Micro-Nano Energy Materials and Devices, Xiangtan University, Xiangtan, China

Tóm tắt

Many superhard allotropes of carbon have been proposed in recent years for the purpose of explaining the superhard carbon phases observed in the processes of cold compressing graphite and carbon nanotubes. In this paper, we have reviewed recent advances in searching for superhard phases of carbon from a segment combination view and find that they can be divided into two groups: (i) combinations of segments from cubic-diamond and hexagonal-diamond with 5–6–7 carbon rings and (ii) combinations of segments from hexagonal-diamond and mutated hexagonal-diamond with 4–6–8 carbon rings. Finally, an additional example of extending these allotropes of carbon to their corresponding boron nitride counterparts has been discussed.

Tài liệu tham khảo

Solozhenko, V.L., Kurakevych, O.O., Andrault, D., Le Godec, Y., and Mezouar, M, Ultimate Metastable Solubility of Boron in Diamond: Synthesis of Superhard Diamond-Like BC5, Phys. Rev. Lett., 2009, vol. 102, no. 1, art. 015506.

Yu, K.M., Cohen, M.L., Haller, E.E., Hansen, W.L., Liu, A.Y., and Wu. I.C., Observation of Crystalline C3N4, Phys. Revs. B. 1994, vol. 49, no. 7, pp. 5034–5037.

Montigaud, H., Tanguy, B., Demazeau, G., Alves, I., and Courjault, S., C3N4: Dream or Reality-Solvothermal Synthesis as Macroscopic Samples of the C3N4 Graphitic Form, J. Mater. Sci., 2000, vol. 35, no. 10, pp. 2547–2552.

Mo, S.-D., Ouyang, L., Ching, W.Y., Tanaka, I., Koyama, Y., and Riedel, R., Interesting Physical Properties of the New Spinel Phase of Si3N4 and C3N4, Phys. Rev. Lett., 1999, vol. 83, no. 24, pp. 5046–5049.

Luo, X., Guo, X., Xu, B., Wu, Q., Hu, Q., Liu, Z., He, J., Yu, D., Tian, Y.J., and Wang, H.T., Body-Centered Superhard BC2N Phases from First Principles, Phys. Rev. B, 2007, vol. 76, no. 9, art. 094103.

Luo, X., Guo, X., Liu, Z., He, J., Yu, D., Xu, B., Tian, Y.J., and Wang, H.T., First-Principles Study of Wurtzite BC2N, ibid., 2007, vol. 76, no. 9, art. 92107.

Zhou, X.F., Sun, J., Fan, Y.X., Chen, J., Wang, H.T., Guo, X., He, J., and Tian, Y.J., Most Likely Phase of Superhard BC2N by Ab initio Calculations, ibid., 2007, vol. 76, no. 10, art. 100101.

Sun, H., Jhi, S.-H., Roundy, D., Cohen, M.L., and Louie, S.G., Structural Forms of Cubic BC2N, Phys. Rev. B. 2001, vol. 64, no. 9, art. 094108.

Zhang, Y., Sun, H., and Chen, C.F., Superhard Cubic BC2N Compared to Diamond, Phys. Rev. Lett., 2004, vol. 93, no. 19, art. 195504.

Chen, S.Y., Gong, X.G., and Wei, S.-H., Superhard Pseudocubic BC2N Superlattices, ibid., 2007, vol. 98, no. 1, art. 015502.

Wen, B., Zhao, J.J., Bucknum, M.J., Yao, P.K., and Li, T.J., First-Principles Studies of Diamond Polytypes, Diamond Relat. Mater., 2008, vol. 17, no. 3, pp. 356–364.

Umemoto K., Wentzcovitch, R.M., Saito, S., and Miyake, T., Body-Centered Tetragonal C4: A Viable sp3 Carbon Allotrope, Phys. Rev. Lett., 2010, vol. 104, no. 12, art. 125504.

Strong, S.T., Pickard, C.J, Milman, V., Thimm. G., and Winkler, B., Systematic Prediction of Crystal Structures: An Application to sp3-Hybridized Carbon Polymorphs, Phys. Rev. B, 2004, vol. 70, no. 4, art. 045101.

Wang, J.T., Chen, C.F., and Kawazoe, Y., Low-Temperature Phase Transformation from Graphite to sp3 Orthorhombic Carbon, Phys. Rev. Lett., 2011, vol. 106, no. 7, art. 075501.

Selli, D., Baburin, I.A., Martonak, R., and Leoni, S., Superhard sp3 Carbon Allotropes With Odd and Even Ring Topologies, Phys. Rev. B, 2011, vol. 84, no. 16, art. 161411 (R).

Zhao, Z.S., Xu, B., Zhou, X.F., Wang, L.M., Wen, B., He, J.L., Liu, Z.Y., Wang, H.T., and Tian, Y.J., Novel Superhard Carbon: C-Centered Orthorhombic C8, ibid., 2011, vol. 107, no. 21, art. 215502.

Amsler, M., Flores-Livas, J.A., Botti, S., Marques, M.A.L., and Geodecker, S., Prediction of a Novel Monoclinic Carbon Allotrope, arXiv:1202.6030v1.

Zhu, Q., Zeng, Q., and Oganov, A.R., Systematic Search for Low-Enthalpy sp3 Carbon Allotropes Using Evolutionary Metadynamics, Phys. Rev. B., 2012, vol. 85, no. 20, art. 201407.

Goedecker, S., Minima Hopping: An Efficient Search Method for The Global Minimum of the Potential Energy Surface of Complex Molecular Systems, J. Chem. Phys., 2004, vol. 120, no. 21, pp. 9911–9917.

He, J.L., Wu, E.D., Wang, H.T., Liu, R.P., and Tian, Y.J., Ionicities of Boron-Boron Bonds in B12, Phys. Rev. Lett., 2005, vol. 94, no. 1, art. 015504.

Gao, F.M., He, J.L., Wu, E.D., Liu, S.M., Yu, D.L., Li, D.C., Zhang, S.Y., and Tian, Y.J., Hardness of Covalent Crystals, ibid., 2003, vol. 91, no. 1, art. 015502.

Lyakhov, A.O., and Oganov, A.R., Evolutionary Search for Superhard Materials: Methodology and Applications to Forms of Carbon and TiO2, Phys. Rev. B, 2011, vol. 84, no. 9, art. 092103.

Chopra, N.G., Luyken, R.J., Cherrey, K., Crespi, V.H., Cohen, M.L., Louie, S.G., and Zettl, A., Boron Nitride Nanotubes, ibid., 1995, vol. 269, no. 5226, pp. 966–967.

Wentzcovitch R.M., Fahy, S., Cohen, M.L., and Louie, S.G., Ab initio Study of Graphite → Diamond-like Transitions in BN, Phys. Rev. B, 1988, vol. 38, no. 9, pp. 6191–6193.

Kern, G., Kresse, G., and Hafner, J., Ab initio Calculation of the Lattice Dynamics and Phase Diagram of Boron Nitride, Phys. Rev. B: Condens. Matter, 1999, vol. 59, no. 13, pp. 8551–8859.

Yu, W.J., Lau, W.M., Chan, S.P., Liu, Z.F., and Zheng, Q.Q., Ab initio Study of Phase Transformations in Boron Nitride, Phys. Rev. B., 2003, vol. 67, no. 1, art. 014108.