Mirkarimi, P.B., McCarty, K.F., and Medlin, D.L., Review of Advances in Cubic Boron Nitride Film Synthesis, Mater. Sci. Eng, R, 1997, vol. 21, no. 2, pp. 47–100.
Solozhenko, V.L., Kurakevych, O.O., Andrault, D., Le Godec, Y., and Mezouar, M, Ultimate Metastable Solubility of Boron in Diamond: Synthesis of Superhard Diamond-Like BC5, Phys. Rev. Lett., 2009, vol. 102, no. 1, art. 015506.
Li, Q., Wang, H., Tian, Y.J., Xia, Y., Cui, T., He, J.L., Ma, Y.M., and Zhou, G.T., Superhard and Superconducting Structures of BC5, J. Appl. Phys., 2010, vol. 108, no. 2, art. 023507.
Martin-Gil, J., Martin-Gil, F.J., Sarikaya, M., Qian M.X., Jose-Yacaman, M., and Rubio, A., Evidence of a Low Compressibility Carbon Nitride With Defect-Zinc-Blende Structure, J. Appl. Phys. 1997, vol. 81, no. 6, pp. 2555–2559.
Yu, K.M., Cohen, M.L., Haller, E.E., Hansen, W.L., Liu, A.Y., and Wu. I.C., Observation of Crystalline C3N4, Phys. Revs. B. 1994, vol. 49, no. 7, pp. 5034–5037.
Matsumoto, S., Xie, E.-Q., and Izumi, F., On the Validity of the Formation of Crystalline Carbon Nitrides, C3N4, Diam. Relat. Mater., 1999, vol. 8, no. 7, pp. 1175–1182.
Montigaud, H., Tanguy, B., Demazeau, G., Alves, I., and Courjault, S., C3N4: Dream or Reality-Solvothermal Synthesis as Macroscopic Samples of the C3N4 Graphitic Form, J. Mater. Sci., 2000, vol. 35, no. 10, pp. 2547–2552.
Marton, D., Boyd, K.J., Al-Bayati, A.H., Todorov, S.S., and Rabalais, J.W., Carbon Nitride Deposited Using Energetic Species: A Two-Phase System, Phys. Rev. Lett., 1994, vol. 73, no. 1, pp. 118–121.
Niu, C., Lu, Y.Z., and Lieber, C.M., Experimental Realization of the Covalent Solid Carbon Nitride, Science, 1993, vol. 261, no. 5119, pp. 334–337.
Sjostrom, H., Stafstrom, S., Boman, M., and Sundgren, J.-E., Superhard and Elastic Carbon Nitride Thin Films Having Fullerene-Like Microstructure, Phys. Rev. Lett., 1995, vol. 75, no. 7, pp. 1336–1339.
Peng, Y.G., Ishigaki, T., and Horiuchi, S., Cubic C3N4 Particles Prepared in an Induction Thermal Plasma, Appl. Phys. Lett., 1998, vol. 73, no. 25, pp. 3671–3673.
Cao, C.B., Lv, Q., and Zhu, H.S., Carbon Nitride Prepared by Solvothermal Method, Diam. Relat. Mater., 2003, vol. 12, nos. 3–7, pp. 1070–1074.
Mo, S.-D., Ouyang, L., Ching, W.Y., Tanaka, I., Koyama, Y., and Riedel, R., Interesting Physical Properties of the New Spinel Phase of Si3N4 and C3N4, Phys. Rev. Lett., 1999, vol. 83, no. 24, pp. 5046–5049.
Li, Q., Wang, H., and Ma, Y.M., Predicting New Superhard Phases, J. Superhard Mater., 2010, vol. 32, no. 3, pp. 192–204.
Sun, J., Zhou, X.F., Qian, G.R., Chen, J., Fan, Y.X., Wang, H.T., Guo, X.J., He, J.L., Liu, Z.Y., and Tian, Y.J., Chalcopyrite Polymorph for Superhard BC2N, Appl. Phys. Lett., 2006, vol. 89, no. 15, art. 151911.
Luo, X., Guo, X., Xu, B., Wu, Q., Hu, Q., Liu, Z., He, J., Yu, D., Tian, Y.J., and Wang, H.T., Body-Centered Superhard BC2N Phases from First Principles, Phys. Rev. B, 2007, vol. 76, no. 9, art. 094103.
Luo, X., Guo, X., Liu, Z., He, J., Yu, D., Xu, B., Tian, Y.J., and Wang, H.T., First-Principles Study of Wurtzite BC2N, ibid., 2007, vol. 76, no. 9, art. 92107.
Zhou, X.F., Sun, J., Fan, Y.X., Chen, J., Wang, H.T., Guo, X., He, J., and Tian, Y.J., Most Likely Phase of Superhard BC2N by Ab initio Calculations, ibid., 2007, vol. 76, no. 10, art. 100101.
Zhou, X.F., Sun, J., Qian, Q.R., Guo, X.J., Liu, Z.Y., Tian, Y.J., and Wang, H.T., A Tetragonal Phase of Superhard BC2N, J. Appl. Phys., 2009, vol. 105, no. 9, art. 093521.
Solozhenko, V.L., Andrault, D., Fiquet, G., Mezouar, M., and Rubie, D.C., Synthesis of Superhard Cubic BC2N, Appl. Phys. Lett., 2001, vol. 78, no. 10, pp. 1385–1387.
Sun, H., Jhi, S.-H., Roundy, D., Cohen, M.L., and Louie, S.G., Structural Forms of Cubic BC2N, Phys. Rev. B. 2001, vol. 64, no. 9, art. 094108.
Zhang, Y., Sun, H., and Chen, C.F., Superhard Cubic BC2N Compared to Diamond, Phys. Rev. Lett., 2004, vol. 93, no. 19, art. 195504.
Chen, S.Y., Gong, X.G., and Wei, S.-H., Superhard Pseudocubic BC2N Superlattices, ibid., 2007, vol. 98, no. 1, art. 015502.
Li, Q., Wang, M., Oganov, A.R., Cui, T., Ma, Y., and Zou, G., Rhombohedral Superhard Structure of BC2N, J. Appl. Phys., 2009, vol. 105, no. 5, art. 053514.
Kawaguchi, M., Kawashima, T., and Nakajima, T., Syntheses and Structures of New Graphite-Like Materials of Composition BCN(H) and BC3N(H), Chem. Mater., 1996, vol. 8, no. 6, pp. 1197–1201.
Liu, X.B., Jia, X.P., Zhang, Z.F., Zhao, M., Guo, W., Huang, G.F., and Ma, H.-A, Synthesis and Characterization of New “BCN” Diamond under High Pressure and High Temperature Conditions, Cryst. Growth Des. 2011, vol. 11, no. 4, pp. 1006–1014.
Raffy, C., Furthmuller, J., and Bechstedt, F., Properties of Hexagonal Polytypes of Group-IV Elements from First-Principles Calculations, Phys. Rev. B, 2002, vol. 66, no. 7, art. 075201.
Wen, B., Zhao, J.J., Bucknum, M.J., Yao, P.K., and Li, T.J., First-Principles Studies of Diamond Polytypes, Diamond Relat. Mater., 2008, vol. 17, no. 3, pp. 356–364.
Wang, J.T., Chen, C.F., and Kawazoe, Y., Mechanism for Direct Conversion of Graphite to Diamond, Phys. Rev. B, 2011, vol. 84, no. 1, art. 012102.
Irifune, T., Kurio, A., Sakamoto, S., Inoue, T., and Sumiya, H., Ultrahard Polycrystalline Diamond from Graphite, Nature 2003, vol. 421, pp. 599–600.
Britun, V.F., Kurdyumov, A.V., and Petrusha, I.A., Diffusionless Nucleation of Lonsdaleite and Diamond in Hexagonal Graphite under Static Compression, Powder Metall. Met. Ceram. 2004, vol. 43, no. 1, pp. 87–93.
Sumiya, H., Yusa, H., Inoue, T., Ofuji, H., and Irifune, T., Conditions and Mechanism of Formation of Nano-Polycrystalline Diamonds on Direct Transformation from Graphite and Non-Graphitic Carbon at High Pressure and Temperature, High Pressure Res. 2006, vol. 26, no. 2, pp. 63–69.
Yagi, T., Utsumi, W., Yamakata, M., Kikegawa, T., and Shimomura, O., High-pressure In situ X-ray Diffraction Study of the Phase Transformation from Graphite to Hexagonal Diamond at Room Temperature, Phys. Rev. B, 1992, vol. 46, no. 10, pp. 6031–6039.
Hanfland, M., Beister, H., and Syassen, K., Graphite under Pressure: Equation of State and First-Order Raman Modes, ibid., 1989, vol. 39, no. 17, pp. 12598–12603.
Mao, W.L., Mao, H.K., Eng, P.J., Trainor, T.P., Newville, M., Kao, C.C., Heinz, D.L., Shu, J.F., Meng, Y., and Hemley, R.J., Bonding Changes in Compressed Superhard Graphite, Science, 2003, vol. 302, no. 17, pp. 425–427.
Miller, E.D., Nesting, D.C., and Badding, J.V., Quenchable Transparent Phase of Carbon, Chem. Mater., 1997, vol. 9, no. 1, pp. 18–22.
Ribeiro, F.J., Tangney, P., Louie, S.G., and Cohen, M.L., Structural and Electronic Properties of Carbon in Hybrid Diamond-Graphite Structures, Phys. Rev. B, 2005, vol. 72, no. 21, art. 214109.
Li, Q., Ma, Y.M., Oganov, A.R., Wang, H.B., Wang, H., Xu, Y., Cui, T., Mao, H.K., and Zou, G.T., Superhard Monoclinic Polymorph of Carbon, Phys. Rev. Lett. 2009, vol. 102, no. 17, art. 175506.
Umemoto K., Wentzcovitch, R.M., Saito, S., and Miyake, T., Body-Centered Tetragonal C4: A Viable sp3 Carbon Allotrope, Phys. Rev. Lett., 2010, vol. 104, no. 12, art. 125504.
Baughman, R.H., Liu, A.Y., Cui, C., and Schields, P.J., A Carbon Phase that Graphitizes at Room Temperature, Synth. Met. 1997, vol. 86, no. 1, pp. 2371–2374.
Strong, S.T., Pickard, C.J, Milman, V., Thimm. G., and Winkler, B., Systematic Prediction of Crystal Structures: An Application to sp3-Hybridized Carbon Polymorphs, Phys. Rev. B, 2004, vol. 70, no. 4, art. 045101.
Omata, Y., Yamagami, Y., Tadano, K., Miyake, T., and Saito, S., Nanotube Nanoscience: A Molecular-Dynamics Study, Physica E, 2005, vol. 29, no. 3, pp. 454–468.
Wang, J.T., Chen, C.F., and Kawazoe, Y., Low-Temperature Phase Transformation from Graphite to sp3 Orthorhombic Carbon, Phys. Rev. Lett., 2011, vol. 106, no. 7, art. 075501.
Selli, D., Baburin, I.A., Martonak, R., and Leoni, S., Superhard sp3 Carbon Allotropes With Odd and Even Ring Topologies, Phys. Rev. B, 2011, vol. 84, no. 16, art. 161411 (R).
Amsler, M., Flores-Livas, J.A., Lehtovaara, L., et al., Crystal Structure of Cold Compressed Graphite, Phys. Rev. Lett., 2012, vol. 108, no. 6, art. 065501.
Zhao, Z.S., Xu, B., Zhou, X.F., Wang, L.M., Wen, B., He, J.L., Liu, Z.Y., Wang, H.T., and Tian, Y.J., Novel Superhard Carbon: C-Centered Orthorhombic C8, ibid., 2011, vol. 107, no. 21, art. 215502.
He, C.Y., Sun, L.Z., Zhang, C.X., Peng, X.Y., Zhang, K.W., and Zhong, J.X., Four Superhard Carbon Allotropes: First-Principles Study, Phys. Chem. Chem. Phys. 2012, vol. 14, no. 23, pp. 8410–8414.
Wang, J.T., Chen, C.F., and Kawazoe, Y., Orthorhombic Carbon Allotrope of Compressed Graphite: Ab initio Calculations, Phys. Rev. B, 2012, vol. 85, no. 3, art. 033410.
Li, D., Bao, K., Tian, F.B, Zeng, Z.W., He, Z., Liu, B.B., and Cui, T., Lowest Enthalpy Polymorph of Cold-Compressed Graphite Phase, Phys. Chem. Chem. Phys. 2012, vol. 14, no. 13, pp. 4347–4350.
Tian, F., Dong, X., Zhao, Z.S., He, J.L., and Wang, H.T., Superhard F-Carbon Predicted by Ab initio Particle-Swarm Optimization Methodology, J. Phys: Condens. Matter, 2012, vol. 24, no. 16, art. 165504.
Niu, H.Y., Chen, X.Q., Wang, S.B., Li, D.Z., Mao, W.L., and Li, Y.Y., Families of Superhard Crystalline Carbon Allotropes Constructed via Cold Compression of Graphite and Nanotubes, Phys. Rev. Lett., 2012, vol. 108, no. 13, art. 135501.
Amsler, M., Flores-Livas, J.A., Botti, S., Marques, M.A.L., and Geodecker, S., Prediction of a Novel Monoclinic Carbon Allotrope, arXiv:1202.6030v1.
Zhu, Q., Zeng, Q., and Oganov, A.R., Systematic Search for Low-Enthalpy sp3 Carbon Allotropes Using Evolutionary Metadynamics, Phys. Rev. B., 2012, vol. 85, no. 20, art. 201407.
He, C.Y., Sun, L.Z., Zhang, C.X., et al., New Superhard Carbon Phases between Graphite and Diamond, Solid. State. Commun., 2012, vol. 152, no. 16, pp. 1560–1563.
Zhu, Q., Oganov, A.R., Salvado M., Pertierra, P., and Lyakhov A.O., Denser than diamond: Ab initio Search for Superdense Carbon Allotropes, Phys. Rev. B, 2011, vol. 83, no. 19, art. 193410.
Wang, Y.C., Lv, J., Zhu, L., and Ma, Y.M., Crystal Structure Prediction Via Particle-Swarm Optimization, ibid., 2010, vol. 82, no. 9, art. 094116.
Wang, Y.C., Lv, J., Zhu, L., and Ma, Y.M., ”CALYPSO: a Method for Crystal Structure Prediction”, Comp. Phys. Commun., 2012, vol. 183, no 10, pp. 2063–2070.
Goedecker, S., Minima Hopping: An Efficient Search Method for The Global Minimum of the Potential Energy Surface of Complex Molecular Systems, J. Chem. Phys., 2004, vol. 120, no. 21, pp. 9911–9917.
Niu, H.Y., Wei, P.Y., Sun, Y., Chen, X.Q., Franchini, C., Li, D.Z., and Li, Y.Y., Electronic, Optical, and Mechanical Properties of Superhard Cold-Compressed Phases of Carbon, Appl. Phys. Lett., 2011, vol. 99, no. 3, art. 031901.
Guo, X.G., Li, L., Liu, Z.Y., Yu, D.L., He, J.L., Liu, R.P., Xu, B., Tian, Y.J., and Wang, H.T., Hardness of Covalent Compounds: Roles of Metallic Component and d Valence Electrons, J. Appl. Phys., 2008, vol. 104, no. 2, art. 023503.
He, J.L., Wu, E.D., Wang, H.T., Liu, R.P., and Tian, Y.J., Ionicities of Boron-Boron Bonds in B12, Phys. Rev. Lett., 2005, vol. 94, no. 1, art. 015504.
Gao, F.M., He, J.L., Wu, E.D., Liu, S.M., Yu, D.L., Li, D.C., Zhang, S.Y., and Tian, Y.J., Hardness of Covalent Crystals, ibid., 2003, vol. 91, no. 1, art. 015502.
Lyakhov, A.O., and Oganov, A.R., Evolutionary Search for Superhard Materials: Methodology and Applications to Forms of Carbon and TiO2, Phys. Rev. B, 2011, vol. 84, no. 9, art. 092103.
Zhao, Z.S., Xu. B., Wang, L.M., Zhou, X.F., He, J.L., Liu, Z.Y., Wang, H.T., and Tian, Y.J., Three Dimensional Carbon Nanotube Polymers, ACS. Nano, 2011, vol. 5, no. 9, pp. 7726–7234.
Scandolo, S., Bernasconi, M., Chiarotti, G.L., Focher, P., and Tosatti, E., Pressure-Induced Transformation Path of Graphite to Diamond, Phys. Rev. Lett., 1995, vol. 74, no. 20, pp. 4015–4018.
Zhou, X.F., Qian, G.R., Dong, X., Zhang, L.X., Tian, Y.J., and Wang, H.T., Ab initio Study of the Formation of Transparent Carbon under Pressure, Phys. Rev. B., 2010, vol. 82, no. 13, art. 13126.
Khaliullin, R.Z., Eshet, H., Kuhne, T.D., Behler, J., and Parrinello, M., Nucleation Mechanism for the Direct Graphite-to-Diamond Phase Transition, Nat. Mater., 2011, vol. 10, no. 1, pp. 693–697.
Boulfelfel, S.E., Oganov, A.R., and Leoni, S., Understanding the Nature of “Superhard Graphite”, Sci. Rep., 2012, vol. 2, art. 471.
Wang, Y.J., Panzik, J.E., Kiefer, B., and Lee, K.K.M, Crystal Structure of Graphite under Room-Temperature Compression and Decompression, Sci. Rep., 2012, vol. 2, art. 520.
Hamilton, E.J.M., Dolan, S.E., Mann, C., Colijn, H.O., Mcdonald C.A., and Shore, S.G., Preparation of Amorphous Boron Nitride and Its Conversion to a Turbostratic, Tubular Form, Science, 1993, vol. 260, no. 5108, pp. 659–661.
Chopra, N.G., Luyken, R.J., Cherrey, K., Crespi, V.H., Cohen, M.L., Louie, S.G., and Zettl, A., Boron Nitride Nanotubes, ibid., 1995, vol. 269, no. 5226, pp. 966–967.
Golberg, D., Bando, Y., Stephan, O., and Kurashima, K., Octahedral Boron Nitride Fullerenes Formed by Electron Beam Irradiation, Appl. Phys. Lett., 1998, vol. 73, no. 17, pp. 2441–2443.
Wentzcovitch R.M., Fahy, S., Cohen, M.L., and Louie, S.G., Ab initio Study of Graphite → Diamond-like Transitions in BN, Phys. Rev. B, 1988, vol. 38, no. 9, pp. 6191–6193.
Pan, Z., Sun, H., Zhang, Y., and Chen, C.F., Harder than Diamond: Superior Indentation Strength of Wurtzite BN and Lonsdaleite, Phys. Rev. Lett., 2009, vol. 102, no. 5, art. 055503.
Kern, G., Kresse, G., and Hafner, J., Ab initio Calculation of the Lattice Dynamics and Phase Diagram of Boron Nitride, Phys. Rev. B: Condens. Matter, 1999, vol. 59, no. 13, pp. 8551–8859.
Meng, Y., Mao, H.K., Eng, P.J., Trainor, T.P., Newville, M., Hu, M.Y., Kao, C., Shu, J., Hausermann, D., and Hemley, R.J., The Formation of sp3 Bonding in Compressed BN, Nat. Mater., 2004, vol. 3, no. 1, pp. 111–114.
Yu, W.J., Lau, W.M., Chan, S.P., Liu, Z.F., and Zheng, Q.Q., Ab initio Study of Phase Transformations in Boron Nitride, Phys. Rev. B., 2003, vol. 67, no. 1, art. 014108.
Wang, H.B., Li, Q., Cui, T., Ma, Y.M., and Zou, G.T., Phase-Transition Mechanism of hBN → wBN from First Principles, Solid. State. Commun., 2009, vol. 149, no. 21, pp. 843–846.
Wen, B., Zhao, J.J., Melnik. R., and Tian, Y.J., Body-Centered Tetragonal B2N2: a Novel sp3 Bonding Boron Nitride Polymorph, Phys. Chem. Chem. Phys. 2011, vol. 13, no. 32, pp. 14565–14570.
Li, Z.P. and Gao, F.M., Structure, Bonding, Vibration, and Ideal Strength of Primitive-Centered Tetragonal Boron Nitride, Phys. Chem. Chem. Phys., 2012, vol. 14, no. 2, pp. 869–876.
He, C.Y., Sun, L.Z., Zhang, C.X., Peng, X.Y., Zhang, K.W., and Zhong, J.X., Z-BN: a Novel Superhard Boron Nitride Phase, Phys. Chem. Chem. Phys., 2012, vol. 14, no. 31, pp. 10967–10971.