Predicting new superhard phases

Journal of Superhard Materials - Tập 32 - Trang 192-204 - 2010
Q. Li1, H. Wang1, Y. M. Ma1
1State Key Lab of Superhard Materials, Jilin University, Changchun, China

Tóm tắt

The search for new superhard materials is of great importance in view of their major roles played for the fundamental science and the industrial applications. Recent experimental synthesis has made several great successes, but the difficulties associated with synthesis in general remain. Materials design technique is greatly desirable as a request to assist experiment. In this paper, two rational theoretical methods of design of superhard materials have been reviewed: (i) substitutional method, which is successful in some cases, but limited to the known chemically related phases, and (ii) global free energy minimization method, which can be applied to large scale of materials with the only information of chemical compositions. The successful applications have been described and the main principles are summarized.

Tài liệu tham khảo

Šimùnek, A. and Vackár, J., Hardness of Covalent and Ionic Crystals: First-Principle Calculations, Phys. Rev. Lett., 2006, vol. 96, no. 8, pp. 085501 1–4. Zhang, S., Sun, D., Fu, Y., and Du, H., Recent Advances of Superhard Nanocomposite Coatings: a Review, Surface & Coatings Technology, 2003, vol. 167, nos. 2–3, pp. 113–119. Kaner, R.B., Gilman, J.J., and Tolbert, S.H., Designing Superhard Materials, Science, 2005, vol. 308, no. 5726, pp. 1268–1269. Knittle, E., Kaner, R.B., Jeanloz, R., and Cohen, M.L., High-Pressure Synthesis, Characterization, and Equation of State of Cubic C-BN Solid Solutions, Phys. Rev. B, 1995, vol. 51, no. 18, pp. 12149–12156. Solozhenko, V.L., Andrault, D., Fiquet, G., Mezouar, M., and Rubie, D.C., Synthesis of Superhard Cubic BC2N, Appl. Phys. Lett., 2001, vol. 78, no. 10, pp. 1385–1387. Komatsu, T., Nomura, M., Kakudate, Y., and Fujiwara, S., Synthesis and Characterization of a Shock-Synthesized Cubic B-C-N Solid Solution of Composition BC2.5N, J. Mater. Chem., 1996, vol. 6, no. 11, pp. 1799–1803. Zhao, Y., He, D.W., Daemen, L.L., Shen, T.D., Schwarz, R.B., Zhu, Y., Bish, D.L., Huang, J., Zhang, J., Shen, G., Qian, J., and Zerda, T.W., Superhard B-C-N Materials Synthesized in Nanostructured Bulks, J. Mater. Res., 2002, vol. 17, no. 12, pp. 3139–3145. Nakano, S., Akaishi, M., Sasaki, T., and Yamaoka, S., Segregative Crystallization of Several Diamond-Like Phases from the Graphitic BC2N without an Additive at 7.7 GPa, Chem. Mater., 1994, vol. 6, no. 12, pp. 2246–2251. He, J.L., Tian, Y.J., Yu, D.L., Wang, T.S., Liu, S.M., Guo, L.C., Li, D.C., Jia, X.P., Chen, L.X., and Zou, G.T., Orthorhombic B2CN Crystal Synthesized by High Pressure and Temperature, Chem. Phys. Lett., 2001, vol. 340, nos. 5–6, pp. 431–436. Solozhenko, V.L., Kurakevych, O.O., Andrault, D., Le Godec, Y., and Mezouar, M., Ultimate Metastable Solubility of Boron in Diamond: Synthesis of Superhard Diamond-Like BC5, Phys. Rev. Lett., 2009, vol. 102, no. 1, pp. 015506 1–4. Hubert, H., Garvie, L.A.J., Devouard, B., Buseck, P.R., Petuskey, W.T., and McMillan, P.F., High-Pressure, High-Temperature Synthesis and Characterization of Boron Suboxide (B6O), Chem. Mater, 1998, vol. 10, no. 6, pp. 1530–1537. Oganov, A.R., Chen, J.H., Gatti, C., Ma, Y.Z., Ma, Y.M., Glass, C.W., Liu, Z.X., Yu, T., Kurakevych, O.O., and Solozhenko, V.L., Ionic High-Pressure Form of Elemental Boron, Nature, 2009, vol. 457, no. 7231, pp. 863–867. Solozhenko, V.L., Kurakevych, O.O., and Oganov, A.R., On the Hardness of a New Boron Phase, Orthorhombic γ-B28, J. Superhard Mater., 2008, vol. 30, no. 6, pp. 428–429. Godec, Y.L., Kurakevych, O.O., Munsch, P., Garbarino, G., and Solozhenko, V.L., Equation of State of Orthorhombic Boron, ã-B28, Solid State Commun., 2009, vol. 149, nos. 33–34, pp. 1356–1358. Bullett, D.W., Structure and Bonding in Crystalline Boron and B12C3, J. Phys. C: Solid State Phys., 1982, vol. 15, pp. 415–426. Kurakevych, O.O. and Solozhenko, V.L., Rhombohedral Boron Subnitride, B13N2, by X-ray Powder Diffraction, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 2007, vol. 63, no. 9, pp. i80–i82. Crowhurst, J.C., Goncharov, A.F., Sadigh, B., Evans, C.L., Morrall, P.G., Ferreira, J.L., and Nelson, A.J., Synthesis and Characterization of the Nitrides of Platinum and Iridium, Science, 2006, vol. 311, no. 5765, pp. 1275–1278. Gregoryanz, E., Sanloup, C., Somayazulu, M., Badro, J., Fiquet, G., Mao, H., and Hemley, R.J., Synthesis and Characterization of a Binary Noble Metal Nitride, Nat. Mater., 2004, vol. 3, no. 5, pp. 294–297. Crowhurst, J.C., Goncharov, A., Sadigh, B., Zaug, J., Aberg, D., Meng, Y., and Prakapenka, V.B., Synthesis and Characterization of Nitrides of Iridium and Palladium, J. Mater. Res., 2008, vol. 23, no. 1, pp. 1–5. Young, A.F., Sanloup, C., Gregoryanz, E., Scandolo, S., Hemley, R.J., and Mao, H., Synthesis of Novel Transition Metal Nitrides IrN2 and OsN2, Phys. Rev. Lett., 2006, vol. 96, no. 15, pp. 155501 1–4. Jiang, C., Lin, Z., and Zhao, Y., Thermodynamic and Mechanical Stabilities of Tantalum Nitride, Phys Rev Lett, 2009, vol. 103, no. 18, pp. 185501 1–4. Ono, S., Kikegawa, T., and Ohishi, Y., A High-Pressure and High-Temperature Synthesis of Platinum Carbide, Solid State Commun., 2005, vol. 133, no. 1, pp. 55–59. Tolbert, S.H., Cumberland, R.W., Clark, S.M., Gilman, J.J., Weinberger, M.B., and Kaner, R.B., Osmium Diboride, an Ultra-Incompressible, Hard Material, J. Am. Chem. Soc., 2005, vol. 127, no. 20, pp. 7264–7265. Gu, Q., Krauss, F., and Steurer, W., Transition Metal Borides: Superhard versus Ultra-Incompressible, Adv. Mater., 2008, vol. 20, no. 19, pp. 3620–3626. Chung, H.Y., Weinberger, M.B., Levine, J.B., Kavner, A., Yang, J.M., Tolbert, S.H., and Kaner, R.B., Synthesis of Ultra-Incompressible Superhard Rhenium Diboride at Ambient Pressure, Science, 2007, vol. 316, no. 5823, pp. 436–439. Qin, J.Q., He, D.W., Wang, J.H., Fang, L.M., Lei, L., Li, Y.J., Hu, J., Kou, Z.L., and Bi, Y., Is Rhenium Diboride a Superhard Material?, Adv. Mater., 2008, vol. 20, no. 24, pp. 4780–4783. Dubrovinskaia, N., Dubrovinsky, L., and Solozhenko, V.L., Comment on “Synthesis of Ultra-Incompressible Superhard Rhenium Diboride at Ambient Pressure”, Science, 2007, vol. 318, no. 5856, p. 1550. Chung, H.Y., Yanga, J.M., Tolbert, S.H., and Kanerb, R.B., Anisotropic Mechanical Properties of Ultra-Incompressible, Hard Osmium Diboride, J. Mater. Res., 2008, vol. 23, no. 6, pp. 1797–1801. Wang, M., Li, Y., Cui, T., Ma, Y., and Zou, G., Origin of Hardness in WB4 and Its Implications for ReB4, TaB4, MoB4, TcB4, and OsB4, Appl. Phys. Lett., 2008, vol. 93, no. 10, pp. 101905 1–3. Gao, F., He, J., Wu, E., Liu, S., Yu, D., Li, D., Zhang, S., and Tian, Y., Hardness of Covalent Crystals, Phys. Rev. Lett., 2003, vol. 91, no. 1, pp. 015502 1–4. He, J., Wu, E., Wang, H., Liu, R., and Tian, Y., Ionicities of Boron-Boron Bonds in B12 Icosahedra, Phys. Rev. Lett., 2005, vol. 94, no. 1, pp. 015504 1–4. Gao, F.M., Theoretical Model of Intrinsic Hardness, Phys. Rev. B, 2006, vol. 73, no. 13, p. 132104. Li, K., Wang, X., Zhang, F., and Xue, D., Electronegativity Identification of Novel Superhard Materials, Phys. Rev. Lett., 2008, vol. 100, no. 23, pp. 235504 1–4. Zhang, Y., Sun, H., and Chen, C.F., Superhard Cubic BC2N Compared to Diamond, Phys. Rev. Lett., 2004, vol. 93, no. 19, pp. 195504 1–4. Guo, X., Li, L., Liu, Z., Yu, D., He, J., Liu, R., Xu, B., Tian, Y., and Wang, H.T., Hardness of Covalent Compounds: Roles of Metallic Component and d Valence Electrons, J. Appl. Phys., 2008, vol. 104, no. 2, pp. 023503 1–7. Gao, F., Hou, L., and He, Y., Origin of Superhardness in Icosahedral B12 Materials, J. Phys. Chem. B, 2004, vol. 108, no. 35, pp. 13069–13073. Gao, F., Hardness Estimation of Complex Oxide Materials, Phys. Rev. B, 2004, vol. 69, no. 9, pp. 094113 1–6. Mukhanov, V.A., Kurakevych, O.O., and Solozhenko, V.L., Hardness of Materials at High Temperature and High Pressure, Philos. Mag., 2009, vol. 89, no. 25, pp. 2117–2127. Mukhanov, V.A., Kurakevych, O.O., and Solozhenko, V.L., Thermodynamic Aspects of Materials’ Hardness: Prediction of Novel Superhard High-Pressure Phases, Int. J. High Pressure Research, 2008, vol. 28, no. 4, pp. 531–537. Gao, F., Xu, R., and Liu, K., Origin Of Hardness in Nitride Spinel Materials, Phys. Rev. B, 2005, vol. 71, no. 5, pp. 052103 1–4. Cohen, M.L., Calculation of Bulk Moduli of Diamond and Zinc-Blende Solids, Phys. Rev. B, 1985, vol. 32, no. 12, pp. 7988–7991. Liu, A.Y. and Cohen, M.L., Prediction of New Low Compressibility Solids, Science, 1989, vol. 245, no. 4920, pp. 841–842. Marton, D., Boyd, K.J., Al-Bayati, A.H., Todorov, S.S., and Rabalais, J.W., Carbon Nitride Deposited Using Energetic Species: A Two-Phase System, Phys. Rev. Lett., 1994, vol. 73, no. 1, pp. 118–121. Niu, C., Lu, Y.Z., and Lieber, C.M., Experimental Realization of the Covalent Solid Carbon Nitride, Science, 1993, vol. 261, no. 5119, pp. 334–337. Yu, K.M., Cohen, M.L., Haller, E.E., Hansen, W.L., Liu, A.Y., and Wu, I.C., Observation of Crystalline C3N4, Phys. Rev. B, 1994, vol. 49, no. 7, pp. 5034–5037. Sjöström, H., Stafström, S., Boman, M., and Sundgren, J.-E., Superhard and Elastic Carbon Nitride Thin Films Having Fullerene-Like Microstructure, Phys. Rev. Lett., 1995, vol. 75, no. 7, pp. 1336–1339. Wixom, M.R., Chemical Preparation and Shock Wave Compression of Carbon Nitride Precursors, J. Am. Ceram. Soc., 1990, vol. 73, no. 7, pp. 1973–1978. Montigaud, H., Tanguy, B., Demazeau, G., Alves, I., and Courjault, S., C3N4: Dream or Reality? Solvothermal Synthesis as Macroscopic Samples of the C3N4 Graphitic Form, J. Mater. Science, 2000, vol. 35, no. 10, pp. 2547–2552. Peng, Y.G., Ishigaki, T., and Horiuchi, S., Cubic C3N4 Particles Prepared in an Induction Thermal Plasma, Appl. Phys. Lett., 1998, vol. 73, no. 25, pp. 3671–3673. Cao, C.B., Lv, Q., and Zhu, H.S., Carbon Nitride Prepared by Solvothermal Method, Diam. Relat. Mater., 2003, vol. 12, nos. 3–7, p. 1070. Zhang, Z., Leinenweber, K., Bauer, M., Garvie, L.A.J., McMillan, P.F., and Wolf, G.H., High-Pressure Bulk Synthesis of Crystalline C6N9H3. HCl: A Novel C3N4 Graphitic Derivative, J. Am. Chem. Soc, 2001, vol. 123, no. 32, pp. 7788–7796. Mo, S.-D., Ouyang, L., Ching, W.Y., Tanaka, I., Koyama, Y., and Riedel, R., Interesting Physical Properties of the New Spinel Phase of Si3N4 and C3N4, Phys. Rev. Lett., 1999, vol. 83, no. 24, pp. 5046–5049. Teter, D.M. and Hemley, R.J., Low-Compressibility Carbon Nitrides, Science, 1996, vol. 271, no. 5245, pp. 53–55. Gao, F., Klug, D.D., and Tse, J.S., Theoretical Study of New Superhard Materials: B4C3, J. Appl. Phys., 2007, vol. 102, no. 8, pp. 084311 1–5. Matar, S.F. and Mattesini, M., Ab initio Search of Carbon Nitrides, Isoelectronic with Diamond, Likely to Lead to New Ultra-Hard Materials, Comptes Rendus de l’Académie des Sciences. Series IIC. Chemistry, 2001, vol. 4, no. 4, pp. 255–272. Sun, J., Zhou, X.F., Qian, G.R., Chen, J., Fan, Y.X., Wang, H.T., Guo, X.J., He, J.L., Liu, Z.Y., and Tian, Y.J., Chalcopyrite Polymorph for Superhard BC2N, Appl. Phys. Lett., 2006, vol. 89, no. 15, pp. 151911 1–3. Luo, X., Guo, X., Xu, B., Wu, Q., Hu, Q., Liu, Z., He, J., Yu, D., Tian, Y., and Wang, H.T., Body-Centered Superhard BC2N Phases from First Principles, Phys. Rev. B, 2007, vol. 76, no. 9, pp. 941031–6. Luo, X., Guo, X., Liu, Z., He, J., Yu, D., Xu, B., Tian, Y., and Wang, H.T., First-Principles Study of Wurtzite BC2N, Phys. Rev. B, 2007, vol. 76, no. 9, pp. 92107 1–4. Zhou, X.F., Sun, J., Fan, Y.X., Chen, J., Wang, H.T., Guo, X., He, J., and Tian, Y., Most Likely Phase of Superhard BC2N by ab initio Calculations, Phys. Rev. B, 2007, vol. 76, no. 10, pp. 100101 1–4. Zhou, X.F., Sun, J., Qian, Q.R., Guo, X.J., Liu, Z.Y., Tian, Y.J., and Wang, H.T., A Tetragonal Phase of Superhard BC2N, J. Appl. Phys., 2009, vol. 105, no. 9, pp. 093521 1–4. Yu, R., Zhan, Q., and Zhang, X.F., Elastic Stability and Electronic Structure of Pyrite Type PtN: A Hard Semiconductor, Appl. Phys. Lett., 2006, vol. 88, no. 5, pp. 051913 1–3. Young, A.F., Montoya, J.A., Sanloup, C., Lazzeri, M., Gregoryanz, E., and Scandolo, S., Interstitial Dinitrogen Makes PtN2 an Insulating Hard Solid, Phys. Rev. B, 2006, vol. 73, no. 15, pp. 153102 1–4. von Appen, J., Lumey, M.W., and Dronskowski, R., Mysterious Platinum Nitride, Angew. Chem. Int. Ed., 2006, vol. 45, no. 26, pp. 4365–4368. Chen, Z.W., Guo, X.J., Liu, Z.Y., Ma, M.Z., Jing, Q., Li, G., Zhang, X.Y., Li, L.X., Wang, Q., and Tian, Y.J., Crystal Structure and Physical Properties of OsN2 and PtN2 in the Marcasite Phase, Phys. Rev. B, 2007, vol. 75, no. 5, pp. 54103 1–4. Wang, Y.X., Arai, M., Sasaki, T., and Fan, C.Z., Ab initio Study of Monoclinic Iridium Nitride as a High Bulk Modulus Compound, Phys. Rev. B, 2007, vol. 75, no. 10, pp. 104110 1–6. Yu, R., Zhan, Q., and De Jonghe, L.C., Crystal Structures of and Displacive Transitions in OsN2, IrN2, RuN2, and RhN2 Angew. Chem. Int. Ed., 2007, vol. 46, no. 7, pp. 1136–1140. Aberg, D., Sadigh, B., Crowhurst, J., and Goncharov, A.F., Thermodynamic Ground States of Platinum Metal Nitrides, Phys. Rev. Lett., 2008, vol. 100, no. 9, pp. 095501 1–4. Gou, H.Y., Hou, L., Zhang, J.W., Sun, G.F., Gao, L.H., and Gao, F.M., Theoretical Hardness of PtN2 with Pyrite Structure, Appl. Phys. Lett., 2006, vol. 89, no. 14, pp. 141910 1–3. Zhang, M., Wang, M., Cui, T., Ma, Y., Niu, Y., and Zou, G., Electronic Structure, Phase Stability, and Hardness of the Osmium Borides, Carbides, Nitrides, and Oxides: First-Principles Calculations, J. Phys. Chem. Solids, 2008, vol. 69, no. 8, pp. 2096–2102. Gou, H., Hou, L., Zhang, J., and Gao, F., Pressure-Induced Incompressibility of ReC and Effect of Metallic Bonding on its Hardness, Appl. Phys. Lett., 2008, vol. 92, no. 24, pp. 241901 1–3. Gou, H., Hou, L., Zhang, J., Li, H., Sun, G., and Gao, F., First-Principles Study of Low Compressibility Osmium Borides, Appl. Phys. Lett., 2006, vol. 88, no. 22, pp. 221904 1–3. Šimùmek, A., How to Estimate Hardness of Crystals on a Pocket Calculator, Phys. Rev. B, 2007, vol. 75, no. 17, pp. 172108 1–4. Li, Q., Ma, Y.M., Oganov, A.R., Wang, H.B., Wang, H., Xu, Y., Cui, T., Mao, H.K., and Zou, G.T., Superhard Monoclinic Polymorph of Carbon, Phys. Rev. Lett., 2009, vol. 102, no. 17, p. 175506. Oganov, A.R., Glass, C.W., and Ono, S., High-Pressure Phases of CaCO3: Crystal Structure Prediction and Experiment, Earth Planet. Sci. Lett., 2006, vol. 241, nos. 1–2, pp. 95–103. Oganov, A.R. and Glass, C.W., Crystal Structure Prediction Using ab initio Evolutionary Techniques: Principles and Applications, The Journal of Chemical Physics, 2006, vol. 124, no. 24, pp. 244704 1–15. Glass, C.W., Oganov, A.R., and Hansen, N., USPEX-Evolutionary Crystal Structure Prediction, Comput. Phys. Commun., 2006, vol. 175, nos. 11–12, pp. 713–720. Deem, M.W. and Newsam, J.M., Determination of 4-Connected Framework Crystal Structures by Simulated Annealing, Nature, 1989, vol. 342, no. 6247, pp. 260–262. Pannetier, J., Bassas-Alsina, J., Rodriguez-Carvajal, J., and Caignaert, V., Prediction of Crystal Structures from Crystal Chemistry Rules by Simulated Annealing, Nature, 1990, vol. 346, no. 6282, pp. 343–345. Boisen, M.B., Gibbs, G.V., and Bukowinski, M.S.T., Framework Silica Structures Generated Using Simulated Annealing with a Potential Energy Function Based on an H6Si2O7 Molecule, Phys. Chem. Miner., 1994, vol. 21, no. 5, pp. 269–284. Gödecker, S., Minima Hopping: An Efficient Search Method for the Global Minimum of the Potential Energy Surface of Complex Molecular Systems, The Journal of Chemical Physics, 2004, vol. 120, no. 21, pp. 9911–9917. Martonák, R., Laio, A., and Parrinello, M., Predicting Crystal Structures: The Parrinello-Rahman Method Revisited, Phys. Rev. Lett., 2003, vol. 90, no. 7, pp. 75503 1–4. Li, Q., Wang, M., Oganov, A.R., Cui, T., Ma, Y., and Zou, G., Rhombohedral Superhard Structure of BC2N, J. Appl. Phys., 2009, vol. 105, no. 5, pp. 053514 1–4. Ma, Y., Oganov, A.R., and Xie, Y., High-Pressure Structures of Lithium, Potassium, and Rubidium Predicted by an ab initio Evolutionary Algorithm, Phys. Rev. B, 2008, vol. 78, no. 1, pp. 014102 1–5. Gao, G., Oganov, A.R., Bergara, A., Martinez-Canales, M., Cui, T., Iitaka, T., Ma, Y., and Zou, G., Superconducting High Pressure Phase of Germane, Phys. Rev. Lett., 2008, vol. 101, no. 10, pp. 107002 1–4. Wang, H., Li, Q., Li, Y.E., Xu, Y., Cui, T., Oganov, A.R., and Ma, Y.M., Ultra-Incompressible Phases of Tungsten Dinitride Predicted from First Principles, Phys. Rev. B, 2009, vol. 79, no. 13, p. 132109. Xu, Y., Tse, J.S., Oganov, A.R., Cui, T., Wang, H., Ma, Y., and Zou, G., Superconducting High-Pressure Phase of Cesium Iodide, Phys. Rev. B, 2009, vol. 79, no. 14, pp. 144110 1–4. Wang, H., Li, Q., Wang, Y.C., Gao, G.Y., and Ma, Y.M., High-Pressure Polymorphs of Li2BeH4 Predicted by First-Principles Calculations, J. Physics-Condensed Matter., 2009, vol. 21, no. 38, pp. 385405 1–5. Ma, Y., Oganov, A.R., Li, Z., Xie, Y., and Kotakoski, J., Novel High Pressure Structures of Polymeric Nitrogen, Phys. Rev. Lett., 2009, vol. 102, no. 6, pp. 65501 1–4. Ma, Y., Eremets, M., Oganov, A.R., Xie, Y., Trojan, I., Medvedev, S., Lyakhov, A.O., Valle, M., and Prakapenka, V., Transparent Dense Sodium, Nature, 2009, vol. 458, no. 7235, pp. 182–185. Li, Y., Wang, H., Li, Q., Ma, Y., Cui, T., and Zou, G., Twofold Coordinated Ground-State and Eightfold High-Pressure Phases of Heavy Transition Metal Nitrides MN2 (M=Os, Ir, Ru, and Rh), Inorg. Chem., 2009, vol. 48, no. 20, pp. 9904–9909. Martinez-Canales, M., Oganov, A.R., Ma, Y., Yan, Y., Lyakhov, A.O., and Bergara, A., Novel Structures and Superconductivity of Silane under Pressure, Phys. Rev. Lett., 2009, vol. 102, no. 8, pp. 87005 1–4. Ma, Y., Wang, Y., and Oganov, A.R., Absence of Superconductivity in the High-Pressure Polymorph of MgB2, Phys. Rev. B, 2009, vol. 79, no. 5, pp. 54101 1–5. Hu, C.H., Oganov, A.R., Lyakhov, A.O., Zhou, H.Y., and Hafner, J., Insulating States of LiBeH3 under Extreme Compression, Phys. Rev. B, 2009, vol. 79, no. 13, pp. 134116 1–5. Zhao, Y.X. and Spain, I.L., X-ray Diffraction Data for Graphite to 20 GPa, Phys. Rev. B, 1989, vol. 40, no. 2, pp. 993–997. Yagi, T., Utsumi, W., Yamakata, M., Kikegawa, T., and Shimomura, O., High-Pressure in situ X-Ray Diffraction Study of the Phase Transformation from Graphite to Hexagonal Diamond at Room Temperature, Phys. Rev. B, 1992, vol. 46, no. 10, pp. 6031–6039. Mao, W.L., Mao, H.K., Eng, P.J., Trainor, T.P., Newville, M., Kao, C.C., Heinz, D.L., Shu, J.F., Meng, Y., and Hemley, R.J., Bonding Changes in Compressed Superhard Graphite, Science, 2003, vol. 302, no. 5644, pp. 425–427. Xu, J., Mao, H., and Hemley, R.J., The Gem Anvil Cell: High-Pressure Behavior of Diamond and Related Materials, Journal of Physics, Condensed Matter, 2002, vol. 14, no. 44, pp. 11549–11552. Patterson, J.R., Catledge, S.A., Vohra, Y.K., Akella, J., and Weir, S.T., Electrical and Mechanical Properties of C70 Fullerene and Graphite under High Pressures Studied Using Designer Diamond Anvils, Phys. Rev. Lett., 2000, vol. 85, no. 25, pp. 5364–5367. Bundy, F.P. and Kasper, J.S., Hexagonal Diamond-a New Form of Carbon, The Journal of Chemical Physics, 1967, vol. 46, no. 9, pp. 3437–3446. Chen, C.F. and Sun, H., Comment on “Superhard Pseudocubic BC2N Superlattices”, Phys. Rev. Lett., 2007, vol. 99, no. 15, pp. 159601 1–1. Chen, S., Gong, X.G., and Wei, S.H., Chen, Gong, and Wei Reply, Phys. Rev. Lett., 2007, vol. 99, no. 15, pp. 159602 1–1. Sun, H., Jhi, S.-H., Roundy, D., Cohen, M.L., and Louie, S.G., Structural Forms of Cubic BC2N, Phys. Rev. B, 2001, vol. 64, no. 9, pp. 094108 1–6. Chen, S.Y., Gong, X.G., and Wei, S.H., Superhard Pseudocubic BC2N Superlattices, Phys. Rev. Lett., 2007, vol. 98, no. 1, pp. 015502 1–4. Gildenblat, G.S., Grot, S.A., and Badzian, A., The Electrical Properties and Device Applications of Homoepitaxial and Polycrystalline Diamond Films, Proc. IEEE, 1991, vol. 79, no. 5, pp. 647–668. Jones, L.E. and Thrower, P.A., Influence of Boron on Carbon Fiber Microstructure, Physical Properties, and Oxidation Behavior, Carbon, 1991, vol. 29, no. 2, pp. 251–269. Liu, Z., He, J., Yang, J., Guo, X., Sun, H., Wang, H.T., Wu, E., and Tian, Y., Prediction of a Sandwich-Like Conducting Superhard Boron Carbide: First-Principles Calculations, Phys. Rev. B, 2006, vol. 73, no. 17, pp. 172101 1–4. Calandra, M. and Mauri, F., High-T-c Superconductivity in Superhard Diamond-Like BC5, Phys. Rev. Lett., 2008, vol. 101, no. 1, pp. 016401 1–4. Moussa, J.E. and Cohen, M.L., Constraints on T-c for Superconductivity in Heavily Boron-Doped Diamond, Phys. Rev. B, 2008, vol. 77, no. 6, pp. 064518 1–8. Yang, J., Sun, H., He, J., Tian, Y., and Chen, C., Diamond-Like BC3 as a Superhard Conductor Identified by Ideal Strength Calculations, Journal of Physics, Condensed Matter, 2007, vol. 19, no. 34, pp. 346223 1–7. Lowther, J.E., Potential Superhard Phases and the Stability of Diamond-Like Boron-Carbon Structures, Journal of Physics, Condensed Matter, 2005, vol. 17, no. 21, pp. 3221–3229. Yao, Y., Tse, J.S., and Klug, D.D., Crystal and Electronic Structure of Superhard BC5: First-Principles Structural Optimizations, Phys. Rev. B, 2009, vol. 80, no. 9, pp. 094106 1–6. Li, Q., Wang, H., Tian, Y., Xia, Y., Cui, T., He, J., Ma, Y., and Zou, G., Superhard and Superconducting Structures of BC5, J. Appl. Phys, 2010, in press. Moreno Armenta, M.G., Reyes-Serrato, A., and Avalos Borja, M., Ab initio Determination of the Electronic Structure of Beryllium-, Aluminum-, and Magnesium Nitrides: A Comparative Study, Phys. Rev. B, 2000, vol. 62, no. 8, pp. 4890–4898. Reyes-Serrato, A., Soto, G., Gamietea, A., and Farias, M.H., Electronic Structure of β-Be3N2, J. Phys. Chem. Solids, 1998, vol. 59, no. 5, pp. 743–746. Gou, H., Hou, L., Zhang, J., Wang, Z., Gao, L., and Gao, F., Cubic γ-Be3N2: A Superhard Semiconductor Predicted from First Principles, Appl. Phys. Lett., 2007, vol. 90, no. 19, pp. 191905 1–3. Xia, Y., Li, Q., and Ma, Y., Novel Superhard Polymorphs of Be3N2 Predicted by First-Principles, Computational Materials Science, 2010, in press.