Prediction and overview of the RpoN-regulon in closely related species of the Rhizobiales

Genome Biology - Tập 3 - Trang 1-11 - 2002
Bruno Dombrecht1, Kathleen Marchal2, Jos Vanderleyden1, Jan Michiels1
1Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Heverlee, Belgium
2ESAT-SCD, Katholieke Universiteit Leuven, Heverlee, Belgium

Tóm tắt

In the rhizobia, a group of symbiotic Gram-negative soil bacteria, RpoN (σ54, σN, NtrA) is best known as the sigma factor enabling transcription of the nitrogen fixation genes. Recent reports, however, demonstrate the involvement of RpoN in other symbiotic functions, although no large-scale effort has yet been undertaken to unravel the RpoN-regulon in rhizobia. We screened two complete rhizobial genomes (Mesorhizobium loti, Sinorhizobium meliloti) and four symbiotic regions (Rhizobium etli, Rhizobium sp. NGR234, Bradyrhizobium japonicum, M. loti) for the presence of the highly conserved RpoN-binding sites. A comparison was also made with two closely related non-symbiotic members of the Rhizobiales (Agrobacterium tumefaciens, Brucella melitensis). A highly specific weight-matrix-based screening method was applied to predict members of the RpoN-regulon, which were stored in a highly annotated and manually curated dataset. Possible enhancer-binding proteins (EBPs) controlling the expression of RpoN-dependent genes were predicted with a profile hidden Markov model. The methodology used to predict RpoN-binding sites proved highly effective as nearly all known RpoN-controlled genes were identified. In addition, many new RpoN-dependent functions were found. The dependency of several of these diverse functions on RpoN seems species-specific. Around 30% of the identified genes are hypothetical. Rhizobia appear to have recruited RpoN for symbiotic processes, whereas the role of RpoN in A. tumefaciens and B. melitensis remains largely to be elucidated. All species screened possess at least one uncharacterized EBP as well as the usual ones. Lastly, RpoN could significantly broaden its working range by direct interfering with the binding of regulatory proteins to the promoter DNA.

Tài liệu tham khảo

Barrios H, Valderrama B, Morett E: Compilation and analysis of sigma 54-dependent promoter sequences. Nucleic Acids Res. 1999, 27: 4305-4313. 10.1093/nar/27.22.4305.

Buck M, Gallegos MT, Studholme DJ, Guo YL, Gralla JD: The bacterial enhancer-dependent sigma(54) (sigma(N)) transcription factor. J Bacteriol. 2000, 182: 4129-4136. 10.1128/JB.182.15.4129-4136.2000.

Shingler V: Signal sensing by sigma 54-dependent regulators: derepression as a control mechanism. Mol Microbiol. 1996, 19: 409-416. 10.1046/j.1365-2958.1996.388920.x.

Reitzer L, Schneider BL: Metabolic context and possible physiological themes of sigma(54)-dependent genes in Escherichia coli. Microbiol Mol Biol Rev. 2001, 65: 422-444. 10.1128/MMBR.65.3.422-444.2001.

Keseler IM, Kaiser D: Sigma(54), a vital protein for Myxococcus xanthus. Proc Natl Acad Sci USA. 1997, 94: 1979-1984. 10.1073/pnas.94.5.1979.

Arcondéguy T, Jack R, Merrick M: P-II signal transduction proteins, pivotal players in microbial nitrogen control. Microbiol Mol Biol Rev. 2001, 65: 80-105. 10.1128/MMBR.65.1.80-105.2001.

Stigter J, Schneider M, de Bruijn FJ: Azorhizobium caulinodans nitrogen fixation (nif/fix) gene regulation: mutagenesis of the nifA -24/-12 promoter element, characterization of a ntrA(rpoN) gene, and derivation of a model. Mol Plant-Microbe Interact. 1993, 6: 238-252.

Clark SR, Oresnik IJ, Hynes MF: RpoN of Rhizobium leguminosarum bv. viciae strain VF39SM plays a central role in FnrN-dependent microaerobic regulation of genes involved in nitrogen fixation. Mol Gen Genet. 2001, 264: 623-633. 10.1007/s004380000348.

Hawkins FK, Johnston AW: Transcription of a Rhizobium leguminosarum biovar phaseoli gene needed for melanin synthesis is activated by NifA of Rhizobium and Klebsiella pneumoniae. Mol Microbiol. 1988, 2: 331-337.

Soto MJ, Zorzano A, Mercado-Blanco J, Lepek V, Olivares J, Toro N: Nucleotide sequence and characterization of Rhizobium meliloti nodulation competitiveness genes nfe. J Mol Biol. 1993, 229: 570-576. 10.1006/jmbi.1993.1060.

Brito B, Martinez M, Fernandez D, Rey L, Cabrera E, Palacios JM, Imperial J, Ruiz-Argueso T: Hydrogenase genes from Rhizobium leguminosarum bv. viciae are controlled by the nitrogen fixation regulatory protein NifA. Proc Natl Acad Sci USA. 1997, 94: 6019-6024. 10.1073/pnas.94.12.6019.

Fellay R, Hanin M, Montorzi G, Frey J, Freiberg C, Golinowski W, Staehelin C, Broughton WJ, Jabbouri S: nodD2 of Rhizobium sp NGR234 is involved in the repression of the nodABC operon. Mol Microbiol. 1998, 27: 1039-1050. 10.1046/j.1365-2958.1998.00761.x.

Vlassak KM, de Wilde P, Snoeck C, Luyten E, van Rhijn P, Vanderleyden J: The Rhizobium sp. BR816 nodD3 gene is regulated by a transcriptional regulator of the AraC/XylS family. Mol Gen Genet. 1998, 258: 558-561. 10.1007/s004380050768.

Luyten E, Swinnen E, Vlassak K, Verreth C, Dombrecht B, Vanderleyden J: Analysis of a symbiosis-specific cytochrome P450 homolog in Rhizobium sp. BR816. Mol Plant Microbe Interact. 2001, 14: 918-924.

Freiberg C, Fellay R, Bairoch A, Broughton WJ, Rosenthal A, Perret X: Molecular basis of symbiosis between Rhizobium and legumes. Nature. 1997, 387: 394-401. 10.1038/387394a0.

Göttfert M, Rothlisberger S, Kundig C, Beck C, Marty R, Hennecke H: Potential symbiosis-specific genes uncovered by sequencing a 410-kilobase DNA region of the Bradyrhizobium japonicum chromosome. J Bacteriol. 2001, 183: 1405-1412. 10.1128/JB.183.4.1405-1412.2001.

Sullivan JT, Trzebiatowski JR, Cruickshank RW, Gouzy J, Brown SD, Elliot RM, Fleetwood DJ, McCallum NG, Rossbach U, Stuart GS, et al: Comparative sequence analysis of the symbiosis island of Mesorhizobium loti strain R7A. J Bacteriol. 2002, 184: 3086-3095. 10.1128/JB.184.11.3086-3095.2002.

Wood DW, Setubal JC, Kaul R, Monks DE, Kitajima JP, Okura VK, Zhou Y, Chen L, Wood GE, Almeida NF, et al: The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science. 2001, 294: 2317-2323. 10.1126/science.1066804.

DelVecchio VG, Kapatral V, Redkar RJ, Patra G, Mujer C, Los T, Ivanova N, Anderson I, Bhattacharyya A, Lykidis A, et al: The genome sequence of the facultative intracellular pathogen Brucella melitensis. Proc Natl Acad Sci USA. 2002, 99: 443-448. 10.1073/pnas.221575398.

Michiels J, D'hooghe I, Verretch C, Pelemans H, Vanderleyden J: Characterization of the Rhizobium leguminosarum biovar phaseoli nifA gene, a positive regulator of nif gene expression. Arch Microbiol. 1994, 161: 404-408. 10.1007/s002030050073.

Dombrecht B: The complex regulation and role of the Rhizobium etli RpoN regulon in the symbiotic interaction with the common bean plant (Phaseolus vulgaris L.). 2001, Leuven: Katholieke Universiteit Leuven

Michiels J, Dirix G, Vanderleyden J, Xi CW: Processing and export of peptide pheromones and bacteriocins in gram-negative bacteria. Trends Microbiol. 2001, 9: 164-168. 10.1016/S0966-842X(01)01979-5.

Perret X, Freiberg C, Rosenthal A, Broughton WJ, Fellay R: High-resolution transcriptional analysis of the symbiotic plasmid of Rhizobium sp. NGR234. Mol Microbiol. 1999, 32: 415-425. 10.1046/j.1365-2958.1999.01361.x.

Van Soom C, de Wilde P, Vanderleyden J: HoxA is a transcriptional regulator for expression of the hup structural genes in free-living Bradyrhizobium japonicum. Mol Microbiol. 1997, 23: 967-977. 10.1046/j.1365-2958.1997.2781648.x.

Durmowicz MC, Maier RJ: The FixK(2) protein is involved in regulation of symbiotic hydrogenase expression in Bradyrhizobium japonicum. J Bacteriol. 1998, 180: 3253-3256.

Becana M, Dalton DA, Moran JF, Iturbe-Ormaetxe I, Matamoros MA, Rubio MC: Reactive oxygen species and antioxidants in legume nodules. Physiol Plant. 2000, 109: 372-381. 10.1034/j.1399-3054.2000.100402.x.

Nienaber A, Huber A, Gottfert M, Hennecke H, Fischer HM: Three new NifA-regulated genes in the Bradyrhizobium japonicum symbiotic gene region discovered by competitive DNA-RNA hybridization. J Bacteriol. 2000, 182: 1472-1480. 10.1128/JB.182.6.1472-1480.2000.

Marie C, Broughton WJ, Deakin WJ: Rhizobium type III secretion systems: legume charmers or alarmers?. Curr Opin Plant Biol. 2001, 4: 336-342. 10.1016/S1369-5266(00)00182-5.

Snoeck C: Host specificity determinants of Sinorhizobium sp. B816 for early signaling during symbiotic interactions. 2001, Leuven: Katholieke Universiteit Leuven

Taté R, Riccio A, Merrick M, Patriarca EJ: The Rhizobium etli amtB gene coding for an NH4+ transporter is down-regulated early during bacteroid differentiation. Mol Plant Microbe Interact. 1998, 11: 188-198.

Ercolano E, Mirabella R, Merrick M, Chiurazzi M: The Rhizobium leguminosarum glnB gene is down-regulated during symbiosis. Mol Gen Genet. 2001, 264: 555-564. 10.1007/s004380000333.

Gándara B, Merino AL, Rogel MA, Martinez-Romero E: Limited genetic diversity of Brucella spp. J Clin Microbiol. 2001, 39: 235-240. 10.1128/JCM.39.1.235-240.2001.

Michiels J, Van Soom T, D'hooghe I, Dombrecht B, Benhassine T, de Wilde P, Vanderleyden J: The Rhizobium etli rpoN locus: DNA sequence analysis and phenotypical characterization of rpoN, ptsN, and ptsA mutants. J Bacteriol. 1998, 180: 1729-1740.

Thijs G, Moreau Y, De Smet F, Mathys J, Lescot M, Rombauts S, Rouze P, De Moor B, Marchal K: INCLUSive: Integrated Clustering, Upstream sequence retrieval and motif Sampling. Bioinformatics. 2002, 18: 331-332. 10.1093/bioinformatics/18.2.331.

BioI@Sista: Software. [http://www.esat.kuleuven.ac.be/~dna/Biol/Software.html]

Hertz GZ, Stormo GD: Identification of consensus patterns in unaligned DNA and protein sequences: a large-deviation statistical byasis for penalizing gaps. In Bioinformatics and Genome Research. Edited by: Lim HA, Cantor CR. 1995, Singapore: World Scientific, 201-216.

RSA-tools. [http://rsat.ulb.ac.be/rsat/]

Pfam: Sigma54_activat. [http://www.sanger.ac.uk/cgi-bin/Pfam/getacc?PF00158]

Proteome analysis @ EBI. [http://www.ebi.ac.uk/proteome/index.html]

Entrez-Protein. [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Protein]

Sean Eddy's Lab:HMMER 2.2. [http://hmmer.wustl.edu/]

FramePlot 2.3.2. [http://www.nih.go.jp/~jun/cgi-bin/frameplot.pl]

Michel-Reydellet N, Desnoues N, de Zamaroczy M, Elmerich C, Kaminski PA: Characterisation of the glnK-amtB operon and the involvement of AmtB in methylammonium uptake in Azorhizobium caulinodans. Mol Gen Genet. 1998, 258: 671-677. 10.1007/s004380050781.

Michiels J, Vanderleyden J: Cloning and sequence of the Rhizobium leguminosarum biovar phaseoli fixA gene. Biochim Biophys Acta. 1993, 1144: 232-233. 10.1016/0005-2728(93)90179-J.

Bauer E, Kaspar T, Fischer HM, Hennecke H: Expression of the fixR-nifA operon in Bradyrhizobium japonicum depends on a new response regulator, RegR. J Bacteriol. 1998, 180: 3853-3863.

Weidenhaupt M, Fischer HM, Acuna G, Sanjuan J, Hennecke H: Use of a promoter-probe vector system in the cloning of a new NifA-dependent promoter (ndp) from Bradyrhizobium japonicum. Gene. 1993, 129: 33-40. 10.1016/0378-1119(93)90693-W.