Genome Biology
1474-760X
Cơ quản chủ quản: BMC
Lĩnh vực:
Biotechnology & Applied MicrobiologyGenetics & Heredity
Phân tích ảnh hưởng
Thông tin về tạp chí
Các bài báo tiêu biểu
Structural genomics of membrane proteins
- 2004
Improvements in the fields of membrane-protein molecular biology and biochemistry, technical advances in structural data collection and processing, and the availability of numerous sequenced genomes have paved the way for membrane-protein structural genomics efforts. There has been significant recent progress, but various issues essential for high-throughput membrane-protein structure determination remain to be resolved.
Regulatory interdependence of myeloid transcription factors revealed by Matrix RNAi analysis
Tập 10 - Trang 1-13 - 2009
With the move towards systems biology, we need sensitive and reliable ways to determine the relationships between transcription factors and their target genes. In this paper we analyze the regulatory relationships between 78 myeloid transcription factors and their coding genes by using the matrix RNAi system in which a set of transcription factor genes are individually knocked down and the resultant expression perturbation is quantified. Using small interfering RNAs we knocked down the 78 transcription factor genes in monocytic THP-1 cells and monitored the perturbation of the expression of the same 78 transcription factors and 13 other transcription factor genes as well as 5 non-transcription factor genes by quantitative real-time RT-PCR, thereby building a 78 × 96 matrix of perturbation and measurement. This approach identified 876 cases where knockdown of one transcription factor significantly affected the expression of another (from a potential 7,488 combinations). Our study also revealed cell-type-specific transcriptional regulatory networks in two different cell types. By considering whether the targets of a given transcription factor are naturally up- or downregulated during phorbol 12-myristate 13-acetate-induced differentiation, we could classify these edges as pro-differentiative (229), anti-differentiative (76) or neither (571) using expression profiling data obtained in the FANTOM4 study. This classification analysis suggested that several factors could be involved in monocytic differentiation, while others such as MYB and the leukemogenic fusion MLL-MLLT3 could help to maintain the initial undifferentiated state by repressing the expression of pro-differentiative factors or maintaining expression of anti-differentiative factors.
Illuminating the genome-wide activity of genome editors for safe and effective therapeutics
Tập 19 - Trang 1-7 - 2018
Genome editing holds remarkable promise to transform human medicine as new therapies that can directly address the genetic causes of disease. However, concerns remain about possible undesired biological consequences of genome editors, particularly the introduction of unintended ‘off-target’ mutations. Here, we discuss both important considerations for therapeutic genome editing and our understanding of the functional impact of undesired off-target mutations. An important challenge for the future will be the development of new approaches for predicting and defining the probable function of unintended genome-editing mutations, which will inspire confidence in the next generation of promising genome-editing therapies.
Comparative profiling of the sense and antisense transcriptome of maize lines
- 2006
There are thousands of maize lines with distinctive normal as well as mutant phenotypes. To determine the validity of comparisons among mutants in different lines, we first address the question of how similar the transcriptomes are in three standard lines at four developmental stages. Four tissues (leaves, 1 mm anthers, 1.5 mm anthers, pollen) from one hybrid and one inbred maize line were hybridized with the W23 inbred on Agilent oligonucleotide microarrays with 21,000 elements. Tissue-specific gene expression patterns were documented, with leaves having the most tissue-specific transcripts. Haploid pollen expresses about half as many genes as the other samples. High overlap of gene expression was found between leaves and anthers. Anther and pollen transcript expression showed high conservation among the three lines while leaves had more divergence. Antisense transcripts represented about 6 to 14 percent of total transcriptome by tissue type but were similar across lines. Gene Ontology (GO) annotations were assigned and tabulated. Enrichment in GO terms related to cell-cycle functions was found for the identified antisense transcripts. Microarray results were validated via quantitative real-time PCR and by hybridization to a second oligonucleotide microarray platform. Despite high polymorphisms and structural differences among maize inbred lines, the transcriptomes of the three lines displayed remarkable similarities, especially in both reproductive samples (anther and pollen). We also identified potential stage markers for maize anther development. A large number of antisense transcripts were detected and implicated in important biological functions given the enrichment of particular GO classes.
Author Correction: CRISPRi enables isoform-specific loss-of-function screens and identification of gastric cancer-specific isoform dependencies
Tập 22 - Trang 1-2 - 2021
An amendment to this paper has been published and can be accessed via the original article.
A comprehensive analysis of 195 DNA methylomes reveals shared and cell-specific features of partially methylated domains
Tập 19 - Trang 1-13 - 2018
Partially methylated domains are extended regions in the genome exhibiting a reduced average DNA methylation level. They cover gene-poor and transcriptionally inactive regions and tend to be heterochromatic. We present a comprehensive comparative analysis of partially methylated domains in human and mouse cells, to identify structural and functional features associated with them. Partially methylated domains are present in up to 75% of the genome in human and mouse cells irrespective of their tissue or cell origin. Each cell type has a distinct set of partially methylated domains, and genes expressed in such domains show a strong cell type effect. The methylation level varies between cell types with a more pronounced effect in differentiating and replicating cells. The lowest level of methylation is observed in highly proliferating and immortal cancer cell lines. A decrease of DNA methylation within partially methylated domains tends to be linked to an increase in heterochromatic histone marks and a decrease of gene expression. Characteristic combinations of heterochromatic signatures in partially methylated domains are linked to domains of early and middle S-phase and late S-G2 phases of DNA replication. Partially methylated domains are prominent signatures of long-range epigenomic organization. Integrative analysis identifies them as important general, lineage- and cell type-specific topological features. Changes in partially methylated domains are hallmarks of cell differentiation, with decreased methylation levels and increased heterochromatic marks being linked to enhanced cell proliferation. In combination with broad histone marks, partially methylated domains demarcate distinct domains of late DNA replication.
Response to Commentary: Accounting for diverse transposable element landscapes is key to developing and evaluating accurate de novo annotation strategies
Tập 25 - Trang 1-4 - 2024
Mitochondrial heteroplasmy in vertebrates using ChIP-sequencing data
Tập 17 - Trang 1-14 - 2016
Mitochondrial heteroplasmy, the presence of more than one mitochondrial DNA (mtDNA) variant in a cell or individual, is not as uncommon as previously thought. It is mostly due to the high mutation rate of the mtDNA and limited repair mechanisms present in the mitochondrion. Motivated by mitochondrial diseases, much focus has been placed into studying this phenomenon in human samples and in medical contexts. To place these results in an evolutionary context and to explore general principles of heteroplasmy, we describe an integrated cross-species evaluation of heteroplasmy in mammals that exploits previously reported NGS data. Focusing on ChIP-seq experiments, we developed a novel approach to detect heteroplasmy from the concomitant mitochondrial DNA fraction sequenced in these experiments. We first demonstrate that the sequencing coverage of mtDNA in ChIP-seq experiments is sufficient for heteroplasmy detection. We then describe a novel detection method for accurate detection of heteroplasmies, which also accounts for the error rate of NGS technology. Applying this method to 79 individuals from 16 species resulted in 107 heteroplasmic positions present in a total of 45 individuals. Further analysis revealed that the majority of detected heteroplasmies occur in intergenic regions. In addition to documenting the prevalence of mtDNA in ChIP-seq data, the results of our mitochondrial heteroplasmy detection method suggest that mitochondrial heteroplasmies identified across vertebrates share similar characteristics as found for human heteroplasmies. Although largely consistent with previous studies in individual vertebrates, our integrated cross-species analysis provides valuable insights into the evolutionary dynamics of mitochondrial heteroplasmy.