Preclinical analysis of resistance and cross-resistance to low-dose metronomic chemotherapy

Investigational New Drugs - Tập 32 - Trang 47-59 - 2013
Annabelle Chow1, Amy Wong1, Giulio Francia2, Shan Man1, Robert S. Kerbel1, Urban Emmenegger1,3,4
1Biological Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
2Biological Sciences, University of Texas El Paso, El Paso, USA
3Division of Medical Oncology, Sunnybrook Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
4Sunnybrook Health Sciences Centre T2-054, Toronto, Canada

Tóm tắt

Low-dose metronomic chemotherapy is an emerging form of chemotherapy with distinct mechanisms of action from conventional chemotherapy (e.g., antiangiogenesis). Although developed to overcome resistance to conventional chemotherapy, metronomic chemotherapy is subject to resistance on its own. However, there is a paucity of information on mechanisms of resistance, on cross-resistance between metronomic regimens using different cytotoxic drugs, and on cross-resistance between metronomic versus conventional chemotherapy, or versus targeted antiangiogenic therapy. Herein we show that PC-3 human prostate cancer xenografts were sensitive to both metronomic cyclophosphamide and metronomic docetaxel, but resistant to metronomic topotecan. Conventional docetaxel was only moderately active in parental PC-3 and in metronomic cyclophosphamide resistant PC-3 tumors. However, in metronomic cyclophosphamide resistant PC-3 tumors combining conventional docetaxel or bolus cyclophosphamide therapy with continued metronomic cyclophosphamide was superior to each treatment alone. Furthermore, bevacizumab had single-agent activity against metronomic cyclophosphamide resistant PC-3 tumors. Microarray analyses identified altered regulation of protein translation as a potential mechanism of resistance to metronomic cyclophosphamide. Our results suggest that sensitivity to metronomic chemotherapy regimens using different cytotoxic drugs not only depends on shared mechanisms of action such as antiangiogenesis, but also on as yet unknown additional antitumor effects that appear to be drug-specific. As clinically observed with targeted antiangiogenic agents, the continued use of metronomic chemotherapy beyond progression may amplify the effects of added second-line therapies or vice versa. However, metronomic chemotherapy is no different from other systemic therapies in that predictive biomarkers will be essential to fully exploit this novel use of conventional chemotherapeutics.

Tài liệu tham khảo

Pasquier E, Kavallaris M, Andre N (2010) Metronomic chemotherapy: new rationale for new directions. Nat Rev Clin Oncol 7(8):455–465. doi:10.1038/nrclinonc.2010.82

Emmenegger U, Francia G, Shaked Y, Kerbel RS (2010) Metronomic chemotherapy: principles and lessons learned from applications in the treatment of metastatic prostate cancer. Recent Results Cancer Res 180:165–183. doi:10.1007/978-3-540-78281-0_10

Borne E, Desmedt E, Duhamel A, Mirabel X, Dziwniel V, Maire C, Florin V, Martinot V, Penel N, Vercambre-Darras S, Mortier L (2009) Oral metronomic cyclophosphamide in elderly with metastatic melanoma. Invest New Drugs. doi:10.1007/s10637-009-9298-5

Fontana A, Falcone A, Derosa L, Di Desidero T, Danesi R, Bocci G (2010) Metronomic chemotherapy for metastatic prostate cancer: a ‘young’ concept for old patients? Drugs Aging 27(9):689–696. doi:10.2165/11537480-000000000-00000

Fontana A, Bocci G, Galli L, D’Arcangelo M, Derosa L, Fioravanti A, Orlandi P, Barletta MT, Landi L, Bursi S, Minuti G, Bona E, Grazzini I, Danesi R, Falcone A (2010) Metronomic cyclophosphamide in elderly patients with advanced, castration-resistant prostate cancer. J Am Geriatr Soc 58(5):986–988. doi:10.1111/j.1532-5415.2010.02833.x

Thoenes L, Hoehn M, Kashirin R, Ogris M, Arnold GJ, Wagner E, Guenther M (2010) In vivo chemoresistance of prostate cancer in metronomic cyclophosphamide therapy. J Proteomics 73(7):1342–1354. doi:10.1016/j.jprot.2010.02.019

Hashimoto K, Man S, Xu P, Cruz-Munoz W, Tang T, Kumar R, Kerbel RS (2010) Potent preclinical impact of metronomic low-dose oral topotecan combined with the antiangiogenic drug pazopanib for the treatment of ovarian cancer. Mol Cancer Ther 9(4):996–1006. doi:10.1158/1535-7163.MCT-09-0960

Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98(9):5116–5121. doi:10.1073/pnas.091062498

da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57. doi:10.1038/nprot.2008.211

da Huang W, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37(1):1–13. doi:10.1093/nar/gkn923

Gorn M, Habermann CR, Anige M, Thom I, Schuch G, Andritzky B, Brandl S, Burkholder I, Edler L, Hossfeld DK, Bokemeyer C, Laack E (2008) A pilot study of docetaxel and trofosfamide as second-line ‘metronomic’ chemotherapy in the treatment of metastatic non-small cell lung cancer (NSCLC). Onkologie 31(4):185–189. doi:10.1159/000118626

Young SD, Lafrenie RM, Clemons MJ (2012) Phase ii trial of a metronomic schedule of docetaxel and capecitabine with concurrent celecoxib in patients with prior anthracycline exposure for metastatic breast cancer. Curr Oncol 19(2):e75–e83. doi:10.3747/co.19.879

Facchini G, Caraglia M, Morabito A, Marra M, Piccirillo MC, Bochicchio AM, Striano S, Marra L, Nasti G, Ferrari E, Leopardo D, Vitale G, Gentilini D, Tortoriello A, Catalano A, Budillon A, Perrone F, Iaffaioli RV (2010) Metronomic administration of zoledronic acid and taxotere combination in castration resistant prostate cancer patients: phase I ZANTE trial. Cancer Biol Ther 10(6):543–548. doi:10.4161/cbt.10.6.12611

Wu H, Xin Y, Xiao Y, Zhao J (2012) Low-dose docetaxel combined with (−)-epigallocatechin-3-gallate inhibits angiogenesis and tumor growth in nude mice with gastric cancer xenografts. Cancer Biother Radiopharm 27(3):204–209. doi:10.1089/cbr.2011.1103

Newman SP, Foster PA, Ho YT, Day JM, Raobaikady B, Kasprzyk PG, Leese MP, Potter BV, Reed MJ, Purohit A (2007) The therapeutic potential of a series of orally bioavailable anti-angiogenic microtubule disruptors as therapy for hormone-independent prostate and breast cancers. Br J Cancer 97(12):1673–1682. doi:10.1038/sj.bjc.6604100

Hackl C, Man S, Francia G, Milsom C, Xu P, Kerbel RS (2012) Metronomic oral topotecan prolongs survival and reduces liver metastasis in improved preclinical orthotopic and adjuvant therapy colon cancer models. Gut. doi:10.1136/gutjnl-2011-301585

Kumar S, Mokhtari RB, Sheikh R, Wu B, Zhang L, Xu P, Man S, Oliveira ID, Yeger H, Kerbel RS, Baruchel S (2011) Metronomic oral topotecan with pazopanib is an active antiangiogenic regimen in mouse models of aggressive pediatric solid tumor. Clin Cancer Res 17(17):5656–5667. doi:10.1158/1078-0432.CCR-11-0078

Tam L, McGlynn LM, Traynor P, Mukherjee R, Bartlett JM, Edwards J (2007) Expression levels of the JAK/STAT pathway in the transition from hormone-sensitive to hormone-refractory prostate cancer. Br J Cancer 97(3):378–383. doi:10.1038/sj.bjc.6603871

Chang YM, Kung HJ, Evans CP (2007) Nonreceptor tyrosine kinases in prostate cancer. Neoplasia 9(2):90–100

Paulo P, Barros-Silva JD, Ribeiro FR, Ramalho-Carvalho J, Jeronimo C, Henrique R, Lind GE, Skotheim RI, Lothe RA, Teixeira MR (2012) FLI1 is a novel ETS transcription factor involved in gene fusions in prostate cancer. Genes Chromosomes Cancer 51(3):240–249. doi:10.1002/gcc.20948

Erkizan HV, Uversky VN, Toretsky JA (2010) Oncogenic partnerships: EWS-FLI1 protein interactions initiate key pathways of Ewing’s sarcoma. Clin Cancer Res 16(16):4077–4083. doi:10.1158/1078-0432.CCR-09-2261

di Masi A, Gullotta F, Cappadonna V, Leboffe L, Ascenzi P (2011) Cancer predisposing mutations in BRCT domains. IUBMB life 63(7):503–512. doi:10.1002/iub.472

Chabner BA, Roberts TG Jr (2005) Timeline: chemotherapy and the war on cancer. Nat Rev Cancer 5(1):65–72. doi:10.1038/nrc1529

Raguz S, Yague E (2008) Resistance to chemotherapy: new treatments and novel insights into an old problem. Br J Cancer 99(3):387–391. doi:10.1038/sj.bjc.6604510

Bock C, Lengauer T (2012) Managing drug resistance in cancer: lessons from HIV therapy. Nat Rev Cancer 12(7):494–501. doi:10.1038/nrc3297

Ebos JM, Lee CR, Cruz-Munoz W, Bjarnason GA, Christensen JG, Kerbel RS (2009) Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15(3):232–239. doi:10.1016/j.ccr.2009.01.021

De Souza R, Zahedi P, Badame RM, Allen C, Piquette-Miller M (2011) Chemotherapy dosing schedule influences drug resistance development in ovarian cancer. Mol Cancer Ther 10(7):1289–1299. doi:10.1158/1535-7163.MCT-11-0058

De Souza R, Zahedi P, Moriyama EH, Allen CJ, Wilson BC, Piquette-Miller M (2010) Continuous docetaxel chemotherapy improves therapeutic efficacy in murine models of ovarian cancer. Mol Cancer Ther 9(6):1820–1830. doi:10.1158/1535-7163.MCT-10-0249

Ranpura V, Hapani S, Wu S (2011) Treatment-related mortality with bevacizumab in cancer patients: a meta-analysis. Jama 305(5):487–494. doi:10.1001/jama.2011.51

Ebos JM, Lee CR, Kerbel RS (2009) Tumor and host-mediated pathways of resistance and disease progression in response to antiangiogenic therapy. Clin Cancer Res 15(16):5020–5025. doi:10.1158/1078-0432.CCR-09-0095

Verstovsek S (2013) Ruxolitinib: an oral Janus kinase 1 and Janus kinase 2 inhibitor in the management of myelofibrosis. Postgraduate medicine 125(1):128–135. doi:10.3810/pgm.2013.01.2628