Potential of using granite waste as raw material for geopolymer synthesis
Tài liệu tham khảo
Leake, 1980, The origin of granite magmas: a discussion, J. Geol. Soc. Lond., 137, 93, 10.1144/gsjgs.137.1.0093
Mendoza, 2013, Life cycle inventory analysis of granite production from cradle to gate, Int. J. Life Cycle Assess., 19, 153, 10.1007/s11367-013-0637-6
Vieira, 2005, Characterization of granite waste for incorporation in red ceramic, Mater. Sci. Forum, 499, 728, 10.4028/www.scientific.net/MSF.498-499.728
Li, 2013, Compressive strength of fly ash magnesium oxychloride cement containing granite wastes, Constr. Build. Mater., 38, 1, 10.1016/j.conbuildmat.2012.06.016
Davidovits, 1991, Geopolymers: inorganic polymeric new materials, J. Therm. Anal., 37, 1633, 10.1007/BF01912193
Provis, 2014, Geopolymers and related alkali-activated materials, Rev. Mater. Res., 44, 299, 10.1146/annurev-matsci-070813-113515
Rovnaník, 2010, Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer, Constr. Build. Mater., 24, 1176, 10.1016/j.conbuildmat.2009.12.023
Xu, 2002, Microstructural characterization of geopolymers synthesized from kaolinite/stilbite mixtures using XRD, MAS-NMR, SEM/EDX, TEM/EDX, and HREM, Cem. Concr. Res., 32, 1705, 10.1016/S0008-8846(02)00859-1
Lukey, 2004, A comparative study of kaolinite versus metakaolinite in fly ash based geopolymers containing immobilized metals, Chem. Eng. Commun., 191, 531, 10.1080/00986440490277974
Tchakouté, 2013, Utilization of volcanic ashes for the production of geopolymers cured at ambient temperature, Cem. Concr. Compos., 38, 75, 10.1016/j.cemconcomp.2013.03.010
Ranjbar, 2014, Compressive strength and microstructural analysis of fly ash/palm oil fuel ash based geopolymer mortar, J. Mater. Des., 59, 523, 10.1016/j.matdes.2014.03.037
Zivica, 2014, High strength metahalloysite based geopolymer, Comp. Part B: Eng., 57, 155, 10.1016/j.compositesb.2013.09.034
Guo, 2014, Novel glass ceramic foams materials based on red mud, Ceram. Int., 40, 6677, 10.1016/j.ceramint.2013.11.128
Xu, 2000, The geopolymerisation of aluminosilicate minerals, Int. J. Miner. Process., 59, 247, 10.1016/S0301-7516(99)00074-5
Douglas, 1954, Anhydrous sodium hydroxide: the heat content from 0° to 700°C, the transition temperature and the melting point, J. Res. Natl. Bur. Stand., 53, 81, 10.6028/jres.053.010
Schiavon, 2007, Kaolinisation of granite in an urban environment, Environ. Geol., 52, 399, 10.1007/s00254-006-0473-0
Feng, 2012, Thermal activation of albite for the synthesis of one-part mix geopolymers, J. Am. Ceram. Soc., 572, 565, 10.1111/j.1551-2916.2011.04925.x
Tarte, 1967, Infrared spectra of inorganic aluminates and characteristic vibrational frequencies of AlO4 tetrahedra and AlO6 octahedra, Spectrochim. Acta A, 23, 2127, 10.1016/0584-8539(67)80100-4
Rees, 2007, Attenuated total reflectance Fourier transform infrared analysis of fly ash geopolymer gel aging, Langmuir, 23, 8170, 10.1021/la700713g
Hajimohammadi, 2008, One-part geopolymer mixes from geothermal silica and sodium aluminate, Ind. Eng. Chem. Res., 47, 9396, 10.1021/ie8006825
Favier, 2013, Mechanical properties and compositional heterogeneities of fresh geopolymer pastes, Cem. Concr. Res., 48, 9, 10.1016/j.cemconres.2013.02.001
Lemougna, 2013, The role of iron in the formation of inorganic polymers (geopolymers) from volcanic ash: a 57Fe Mössbauer spectroscopy study, J. Mater. Sci., 48, 5280, 10.1007/s10853-013-7319-4
Lemougna, 2014, Influence of the chemical and mineralogical composition on the reactivity of volcanic ashes during alkali activation, Ceram. Int., 40, 811, 10.1016/j.ceramint.2013.06.072
Redden, 2014, Microstructure, strength, and moisture stability of alkali activated glass powder-based binders, Cem. Concr. Compos., 45, 46, 10.1016/j.cemconcomp.2013.09.011