Compressive strength and microstructural analysis of fly ash/palm oil fuel ash based geopolymer mortar under elevated temperatures
Tài liệu tham khảo
Handoo, 2002, Physicochemical, mineralogical, and morphological characteristics of concrete exposed to elevated temperatures, Cem Concr Res, 32, 1009, 10.1016/S0008-8846(01)00736-0
Arioz, 2009, Retained properties of concrete exposed to high temperatures: size effect, Fire Mater, 33, 211, 10.1002/fam.996
Mendes, 2012, The influence of water absorption and porosity on the deterioration of cement paste and concrete exposed to elevated temperatures, as in a fire event, Cem Concr Compos, 34, 1067, 10.1016/j.cemconcomp.2012.06.007
Temuujin, 2010, Fly ash based geopolymer thin coatings on metal substrates and its thermal evaluation, J Hazard Mater, 180, 748, 10.1016/j.jhazmat.2010.04.121
Sathonsalowaphak, 2009, Workability and strength of lignite bottom ash geopolymer mortar, J Hazard Mater, 168, 44, 10.1016/j.jhazmat.2009.01.120
Puligilla, 2013, Role of slag in microstructural development and hardening of fly ash-slag geopolymer, Cem Concr Res, 43, 70, 10.1016/j.cemconres.2012.10.004
Onisei, 2012, Synthesis of inorganic polymers using fly ash and primary lead slag, J Hazard Mater, 205, 101, 10.1016/j.jhazmat.2011.12.039
Ariffin, 2013, Sulfuric acid resistance of blended ash geopolymer concrete, Constr Build Mater, 43, 80, 10.1016/j.conbuildmat.2013.01.018
Alvarez-Ayuso, 2008, Environmental, physical and structural characterisation of geopolymer matrixes synthesised from coal (co-)combustion fly ashes, J Hazard Mater, 154, 175, 10.1016/j.jhazmat.2007.10.008
Temuujin, 2009, Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes, J Hazard Mater, 167, 82, 10.1016/j.jhazmat.2008.12.121
Skvara, 2009, Material and structural characterization of alkali activated low-calcium brown coal fly ash, J Hazard Mater, 168, 711, 10.1016/j.jhazmat.2009.02.089
Schmucker, 2005, Microstructure of sodium polysialate siloxo geopolymer, Ceram Int, 31, 433, 10.1016/j.ceramint.2004.06.006
Kong, 2010, Effect of elevated temperatures on geopolymer paste, mortar and concrete, Cem Concr Res, 40, 334, 10.1016/j.cemconres.2009.10.017
Awal, 2013, Evaluation of heat of hydration of concrete containing high volume palm oil fuel ash, Fuel, 105, 728, 10.1016/j.fuel.2012.10.020
Tangchirapat, 2007, Use of waste ash from palm oil industry in concrete, Waste Manage, 27, 81, 10.1016/j.wasman.2005.12.014
Chindaprasirt, 2007, Strength and water permeability of concrete containing palm oil fuel ash and rice husk-bark ash, Constr Build Mater, 21, 1492, 10.1016/j.conbuildmat.2006.06.015
Johari, 2012, Engineering and transport properties of high-strength green concrete containing high volume of ultrafine palm oil fuel ash, Constr Build Mater, 30, 281, 10.1016/j.conbuildmat.2011.12.007
Bakharev, 2005, Geopolymeric materials prepared using Class F fly ash and elevated temperature curing, Cem Concr Res, 35, 1224, 10.1016/j.cemconres.2004.06.031
Joseph, 2012, Influence of aggregate content on the behavior of fly ash based geopolymer concrete, Sci Iran, 19, 1188, 10.1016/j.scient.2012.07.006
Ahmaruzzaman, 2010, A review on the utilization of fly ash, Prog Energy Combust Sci, 36, 327, 10.1016/j.pecs.2009.11.003
Sata, 2004, Utilization of palm oil fuel ash in high-strength concrete, J Mater Civ Eng, 16, 623, 10.1061/(ASCE)0899-1561(2004)16:6(623)
Recommendation, 1995, DE LA RILEM PDR. 129-MHT: test methods for mechanical properties of concrete at high temperatures, Mater Struct, 28, 410
Kawai, 2004, High-pressure phase transition of mullite under shock compression, J Appl Phys, 96, 4126, 10.1063/1.1794904
Gialanella, 2010, On the goethite to hematite phase transformation, J Therm Anal Calorim, 102, 867, 10.1007/s10973-010-0756-2
Bakharev, 2006, Thermal behaviour of geopolymers prepared using class F fly ash and elevated temperature curing, Cem Concr Res, 36, 1134, 10.1016/j.cemconres.2006.03.022
Barbosa, 2003, Thermal behaviour of inorganic geopolymers and composites derived from sodium polysialate, Mater Res Bull, 38, 319, 10.1016/S0025-5408(02)01022-X
Kong, 2007, Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures, Cem Concr Res, 37, 1583, 10.1016/j.cemconres.2007.08.021
Rickard, 2011, Assessing the suitability of three Australian fly ashes as an aluminosilicate source for geopolymers in high temperature applications, Mater Sci Eng A – Struct Mater Prop Microstruct Process, 528, 3390, 10.1016/j.msea.2011.01.005
Fletcher, 2005, The composition range of aluminosilicate geopolymers, J Eur Ceram Soc, 25, 1471, 10.1016/j.jeurceramsoc.2004.06.001
Zhang, 2012, Microstructural and strength evolutions of geopolymer composite reinforced by resin exposed to elevated temperature, J Non-Cryst Solids, 358, 620, 10.1016/j.jnoncrysol.2011.11.006
Škvára, 2009, Material and structural characterization of alkali activated low-calcium brown coal fly ash, J Hazard Mater, 168, 711, 10.1016/j.jhazmat.2009.02.089
Chindaprasirt, 2013, Controlling ettringite formation in FBC fly ash geopolymer concrete, Cem Concr Compos, 41, 24, 10.1016/j.cemconcomp.2013.04.009
Lemougna, 2011, Synthesis and thermal properties of inorganic polymers (geopolymers) for structural and refractory applications from volcanic ash, Ceram Int, 37, 3011, 10.1016/j.ceramint.2011.05.002
Winnefeld, 2010, Assessment of phase formation in alkali activated low and high calcium fly ashes in building materials, Constr Build Mater, 24, 1086, 10.1016/j.conbuildmat.2009.11.007
Chindaprasirt, 2010, Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer, Waste Manage, 30, 667, 10.1016/j.wasman.2009.09.040
Rahier, 1996, Low-temperature synthesized aluminosilicate glasses. Part II Rheological transformations during low-temperature cure and high-temperature properties of a model compound, J Mater Sci, 31, 80, 10.1007/BF00355129
Duxson, 2007, Physical evolution of Na-geopolymer derived from metakaolin up to 1000 degrees C, J Mater Sci, 42, 3044, 10.1007/s10853-006-0535-4
Kong, 2008, Damage behavior of geopolymer composites exposed to elevated temperatures, Cem Concr Compos, 30, 986, 10.1016/j.cemconcomp.2008.08.001