Biến thiên nhịp tim trong giấc ngủ của các tân binh quân đội trong khóa huấn luyện quân sự cơ bản 12 tuần

Springer Science and Business Media LLC - Tập 122 - Trang 2135-2144 - 2022
Michael J. Macartney1,2, Penelope Larsen1,3, Neil Gibson1,3, Scott Michael1,3, Jace Drain4, Gregory E. Peoples1,5, Herbert Groeller1,3
1Centre for Medical and Exercise Physiology, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia
2School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
3School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia
4Defence Science and Technology Group, Fishermans Bend, Australia
5Graduate School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia

Tóm tắt

Nghiên cứu này nhằm định lượng nhịp tim trong giấc ngủ (HR) và biến thiên nhịp tim (HRV) cùng với nồng độ yếu tố hoại tử khối u alpha (TNFα) lưu hành trong suốt 12 tuần huấn luyện quân sự cơ bản (BMT). Chúng tôi giả thuyết rằng, bất chấp tải trọng sinh lý cao, BMT sẽ làm tăng thể lực tim mạch và HRV, trong khi làm giảm cả nhịp tim trong giấc ngủ và TNFα ở những tân binh trẻ khỏe mạnh. Sáu mươi ba tân binh (18–43 tuổi) đã thực hiện ít nhất 2 lần ghi lại tần số nhịp tim qua đêm vào tuần 1, 8 và 12 của BMT với 4 giờ đo nhịp tim từng nhịp giữa 00:00 và 06:00h mỗi đêm. Dữ liệu nhịp tim từng nhịp được sử dụng để suy diễn các chỉ số HR và HRV, dữ liệu này được phân tích dưới dạng trung bình hàng tuần (tổng cộng 8 giờ). Mẫu máu vào buổi sáng lúc nhịn ăn được thu thập trong các tuần tương ứng để đo nồng độ TNFα lưu hành và VO2max dự đoán được đánh giá vào tuần 2 và 8. VO2max dự đoán đã tăng đáng kể ở tuần 8 (+3.3 ± 2.6 mL kg−1 min−1; p < 0.001). Nhịp tim trong giấc ngủ (tuan 1, 63 ± 7 b phút−1) đã giảm dần trong suốt khóa BMT (tuần 8, 58 ± 6; tuần 12, 55 ± 6 b phút−1; p < 0.01). HRV trong giấc ngủ được phản ánh bởi căn bậc hai của hiệu số bình quân của các khác biệt liên tiếp (RMSSD; tuần 1, 86 ± 50 ms) đã tăng dần (tuần 8, 98 ± 50; tuần 12, 106 ± 52 ms; p < 0.01). Nồng độ TNFα lưu hành lúc nhịn ăn (tuần 1, 9.1 ± 2.8 pg/mL) không thay đổi ở tuần 8 (8.9 ± 2.5 pg/mL; p = 0.79) nhưng đã giảm đáng kể ở tuần 12 (8.0 ± 2.4 pg/mL; p < 0.01). Tăng VO2max dự đoán, HRV và giảm HR trong giấc ngủ qua đêm phản ánh các phản ứng tập luyện sức bền tim mạch điển hình. Những kết quả này cho thấy tân binh đang đạt được lợi ích sức khỏe tim mạch bất chấp tải trọng sinh lý cao liên quan đến khóa BMT 12 tuần.

Từ khóa

#nhịp tim trong giấc ngủ #biến thiên nhịp tim #yếu tố hoại tử khối u #huấn luyện quân sự cơ bản #sức bền tim mạch

Tài liệu tham khảo

Bassi GS, Kanashiro A, Coimbra NC, Terrando N, Maixner W, Ulloa L (2020) Anatomical and clinical implications of vagal modulation of the spleen. Neurosci Biobehav Rev 112:363–373. https://doi.org/10.1016/j.neubiorev.2020.02.011

Bonaz B, Sinniger V, Pellissier S (2016) Anti-inflammatory properties of the vagus nerve: potential therapeutic implications of vagus nerve stimulation. J Physiol 594(20):5781–5790. https://doi.org/10.1113/jp271539

Booth CK, Probert B, Forbes-Ewan C, Coad RA (2006) Australian Army recruits in training display symptoms of overtraining. Mil Med 171(11):1059–1064. https://doi.org/10.7205/milmed.171.11.1059

Boyett MR, D’Souza A, Zhang H, Morris GM, Dobrzynski H, Monfredi O (2013) Viewpoint: Is the resting bradycardia in athletes the result of remodeling of the sinoatrial node rather than high vagal tone? J Appl Physiol 114(9):1351–1355. https://doi.org/10.1152/japplphysiol.01126.2012

Boyett MR, Wang Y, Nakao S, Ariyaratnam J, Hart G, Monfredi O, D’Souza A (2017) Point: Exercise training-induced bradycardia is caused by changes in intrinsic sinus node function. J Appl Physiol 123(3):684–685. https://doi.org/10.1152/japplphysiol.00604.2017

Boyett M, Wang Y, D’Souza A (2019) CrossTalk opposing view: heart rate variability as a measure of cardiac autonomic responsiveness is fundamentally flawed. J Physiol 597(10):2599–2601. https://doi.org/10.1113/jp277501

Bunde A, Havlin S, Kantelhardt JW, Penzel T, Peter J-H, Voigt K (2000) Correlated and uncorrelated regions in heart-rate fluctuations during sleep. Phys Rev Lett 85(17):3736–3739. https://doi.org/10.1103/PhysRevLett.85.3736

Carfagno DG, Hendrix JC (2014) Overtraining syndrome in the athlete: current clinical practice. Curr Sports Med Rep 13(1):45–51

Coote JH, White MJ (2015) CrossTalk proposal: bradycardia in the trained athlete is attributable to high vagal tone. J Physiol 593(Pt 8):1745–1747. https://doi.org/10.1113/jphysiol.2014.284364

Drain JR, Groeller H, Burley SD, Nindl BC (2017) Hormonal response patterns are differentially influenced by physical conditioning programs during basic military training. J Sci Med Sport 20:S98–S103. https://doi.org/10.1016/j.jsams.2017.08.020

Task Force (1996) Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 93:1043–1065. https://doi.org/10.1161/01.CIR.93.5.1043

Gomez-Merino D, Chennaoui M, Burnat P, Drogou C, Guezennec CY (2003) Immune and hormonal changes following intense military training. Mil Med 168(12):1034–1038. https://doi.org/10.1093/milmed/168.12.1034

Gourine AV, Ackland GL (2019) Cardiac vagus and exercise. Physiology 34(1):71–80. https://doi.org/10.1152/physiol.00041.2018

Grant CC, Mongwe L, Janse van Rensburg DC, Fletcher L, Wood PS, Terblanche E, du Toit PJ (2016) The difference between exercise-induced autonomic and fitness changes measured after 12 and 20 weeks of medium-to-high intensity military training. J Strength Cond Res 30(9):2453–2459. https://doi.org/10.1519/JSC.0b013e3182a1fe46

Heusch G (2008) Heart rate in the pathophysiology of coronary blood flow and myocardial ischaemia: benefit from selective bradycardic agents. Br J Pharmacol 153(8):1589–1601. https://doi.org/10.1038/sj.bjp.0707673

Hinde K, White G, Armstrong N (2021) Wearable devices suitable for monitoring twenty four hour heart rate variability in military populations. Sensors. https://doi.org/10.3390/s21041061

Jouanin JC, Dussault C, Pérès M, Satabin P, Piérard C, Guézennec CY (2004) Analysis of heart rate variability after a ranger training course. Mil Med 169(8):583–587. https://doi.org/10.7205/milmed.169.8.583

Kleiger RE, Stein PK, Bigger JT Jr (2005) Heart rate variability: measurement and clinical utility. Ann Noninvasive Electrocardiol 10(1):88–101. https://doi.org/10.1111/j.1542-474X.2005.10101.x

Lipponen JA, Tarvainen MP (2019) A robust algorithm for heart rate variability time series artefact correction using novel beat classification. J Med Eng Technol 43(3):173–181. https://doi.org/10.1080/03091902.2019.1640306

Macartney MJ, McLennan PL, Peoples GE (2021) Heart rate variability during cardiovascular reflex testing: the importance of underlying heart rate. J Basic Clin Physiol Pharmacol 32(3):145–153. https://doi.org/10.1515/jbcpp-2020-0245

Malik M, Hnatkova K, Huikuri HV, Lombardi F, Schmidt G, Zabel M (2019) CrossTalk proposal: heart rate variability is a valid measure of cardiac autonomic responsiveness. J Physiol 597(10):2595–2598. https://doi.org/10.1113/jp277500

Meeusen R, Duclos M, Foster C, Fry A, Gleeson M, Nieman D, Raglin J, Rietjens G, Steinacker J, Urhausen A (2013) Prevention, diagnosis, and treatment of the overtraining syndrome: joint consensus statement of the European College of Sport Science and the American College of Sports Medicine. Med Sci Sports Exerc 45(1):186–205. https://doi.org/10.1249/MSS.0b013e318279a10a

Michael S, Graham KS, Davis GM (2017) Cardiac autonomic responses during exercise and post-exercise recovery using heart rate variability and systolic time intervals—a review. Front Physiol. https://doi.org/10.3389/fphys.2017.00301

Nummela A, Hynynen E, Kaikkonen P, Rusko H (2016) High-intensity endurance training increases nocturnal heart rate variability in sedentary participants. Biol Sport 33(1):7–13. https://doi.org/10.5604/20831862.1180171

Ojanen T, Jalanko P, Kyröläinen H (2018) Physical fitness, hormonal, and immunological responses during prolonged military field training. Physiol Rep 6(17):e13850. https://doi.org/10.14814/phy2.13850

Osborn O, Olefsky JM (2012) The cellular and signaling networks linking the immune system and metabolism in disease. Nat Med 18(3):363–374. https://doi.org/10.1038/nm.2627

Peng CK, Havlin S, Stanley HE, Goldberger AL (1995) Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5(1):82–87. https://doi.org/10.1063/1.166141

Penzel T, Kantelhardt JW, Grote L, Peter JH, Bunde A (2003) Comparison of detrended fluctuation analysis and spectral analysis for heart rate variability in sleep and sleep apnea. IEEE Trans Biomed Eng 50(10):1143–1151. https://doi.org/10.1109/TBME.2003.817636

Pichot V, Busso T, Roche F, Garet M, Costes F, Duverney D, Lacour JR, Barthélémy JC (2002) Autonomic adaptations to intensive and overload training periods: a laboratory study. Med Sci Sports Exerc 34(10):1660–1666. https://doi.org/10.1097/00005768-200210000-00019

Pickering C, Kiely J (2019) Do non-responders to exercise exist—and if so, what should we do about them? Sports Med 49(1):1–7. https://doi.org/10.1007/s40279-018-01041-1

Pincus SM, Goldberger AL (1994) Physiological time-series analysis: what does regularity quantify? Am J Physiol 266(4 Pt 2):H1643-1656. https://doi.org/10.1152/ajpheart.1994.266.4.H1643

Ross R, Goodpaster BH, Koch LG, Sarzynski MA, Kohrt WM, Johannsen NM, Skinner JS, Castro A, Irving BA, Noland RC, Sparks LM, Spielmann G, Day AG, Pitsch W, Hopkins WG, Bouchard C (2019) Precision exercise medicine: understanding exercise response variability. Br J Sports Med 53(18):1141–1153. https://doi.org/10.1136/bjsports-2018-100328

Sacha J, Barabach S, Statkiewicz-Barabach G, Sacha K, Müller A, Piskorski J, Barthel P, Schmidt G (2013) How to strengthen or weaken the HRV dependence on heart rate–description of the method and its perspectives. Int J Cardiol 168(2):1660–1663. https://doi.org/10.1016/j.ijcard.2013.03.038

Sassi R, Cerutti S, Lombardi F, Malik M, Huikuri HV, Peng CK, Schmidt G, Yamamoto Y (2015) Advances in heart rate variability signal analysis: joint position statement by the e-Cardiology ESC Working Group and the European Heart Rhythm Association co-endorsed by the Asia Pacific Heart Rhythm Society. Europace 17(9):1341–1353. https://doi.org/10.1093/europace/euv015

Seals DR (1985) Chase PB (1989) Influence of physical training on heart rate variability and baroreflex circulatory control. J Appl Physiol 66(4):1886–1895. https://doi.org/10.1152/jappl.1989.66.4.1886

Singh N, Moneghetti KJ, Christle JW, Hadley D, Froelicher V, Plews D (2018) Heart rate variability: an old metric with new meaning in the era of using mhealth technologies for health and exercise training guidance. Part two: prognosis and training. Arrhythm Electrophysiol Rev 7(4):247–255. https://doi.org/10.15420/aer.2018.30.2

Tait JL, Bulmer S, Drain JR, Main LC (2021) Associations between inflammatory markers and well-being during 12 weeks of basic military training. Eur J Appl Physiol 121(3):849–860. https://doi.org/10.1007/s00421-020-04554-8

Tipton MJ, Corbett J, Eglin CM, Mekjavic IB, Montgomery H (2021) In pursuit of the unicorn. Exp Physiol 106(2):385–388. https://doi.org/10.1113/EP089147

Westphal W-P, Rault C, Robert R, Ragot S, Neau J-P, Fernagut P-O, Drouot X (2021) Sleep deprivation reduces vagal tone during an inspiratory endurance task in humans. Sleep. https://doi.org/10.1093/sleep/zsab105