On the traces of XPD: cell cycle matters - untangling the genotype-phenotype relationship of XPD mutations

Springer Science and Business Media LLC - Tập 5 - Trang 1-19 - 2010
Elisabetta Cameroni1, Karin Stettler1, Beat Suter1
1Institute of Cell Biology, University of Bern, Bern, Switzerland

Tóm tắt

Mutations in the human gene coding for XPD lead to segmental progeria - the premature appearance of some of the phenotypes normally associated with aging - which may or may not be accompanied by increased cancer incidence. XPD is required for at least three different critical cellular functions: in addition to participating in the process of nucleotide excision repair (NER), which removes bulky DNA lesions, XPD also regulates transcription as part of the general transcription factor IIH (TFIIH) and controls cell cycle progression through its interaction with CAK, a pivotal activator of cyclin dependent kinases (CDKs). The study of inherited XPD disorders offers the opportunity to gain insights into the coordination of important cellular events and may shed light on the mechanisms that regulate the delicate equilibrium between cell proliferation and functional senescence, which is notably altered during physiological aging and in cancer. The phenotypic manifestations in the different XPD disorders are the sum of disturbances in the vital processes carried out by TFIIH and CAK. In addition, further TFIIH- and CAK-independent cellular activities of XPD may also play a role. This, added to the complex feedback networks that are in place to guarantee the coordination between cell cycle, DNA repair and transcription, complicates the interpretation of clinical observations. While results obtained from patient cell isolates as well as from murine models have been elementary in revealing such complexity, the Drosophila embryo has proven useful to analyze the role of XPD as a cell cycle regulator independently from its other cellular functions. Together with data from the biochemical and structural analysis of XPD and of the TFIIH complex these results combine into a new picture of the XPD activities that provides ground for a better understanding of the patophysiology of XPD diseases and for future development of diagnostic and therapeutic tools.

Tài liệu tham khảo

Lehmann AR: The xeroderma pigmentosum group D (XPD) gene: one gene, two functions, three diseases. Genes Dev 2001, 15: 15–23. 10.1101/gad.859501

Kraemer KH, Patronas NJ, Schiffmann R, Brooks BP, Tamura D, Digiovanna JJ: Xeroderma pigmentosum, trichothiodystrophy and Cockayne syndrome: a complex genotype-phenotype relationship. Neuroscience 2007, 145: 1388–1396. 10.1016/j.neuroscience.2006.12.020

Navarro CL, Cau P, Levy N: Molecular bases of progeroid syndromes. Hum Mol Genet 2006, 15 Spec No 2: R151-R161. 10.1093/hmg/ddl214

Niedernhofer LJ: Tissue-specific accelerated aging in nucleotide excision repair deficiency. Mech Ageing Dev 2008, 129: 408–415. 10.1016/j.mad.2008.04.010

Niedernhofer LJ: Tissue-specific accelerated aging in nucleotide excision repair deficiency. Mech Ageing Dev 2008, 129: 408–415. 10.1016/j.mad.2008.04.010

Kraemer KH, Lee MM, Scotto J: Xeroderma pigmentosum. Cutaneous, ocular, and neurologic abnormalities in 830 published cases. Arch Dermatol 1987, 123: 241–250. 10.1001/archderm.123.2.241

Masutani C, Araki M, Yamada A, Kusumoto R, Nogimori T, Maekawa T, et al.: Xeroderma pigmentosum variant (XP-V) correcting protein from HeLa cells has a thymine dimer bypass DNA polymerase activity. EMBO J 1999, 18: 3491–3501. 10.1093/emboj/18.12.3491

Taylor EM, Broughton BC, Botta E, Stefanini M, Sarasin A, Jaspers NG, et al.: Xeroderma pigmentosum and trichothiodystrophy are associated with different mutations in the XPD (ERCC2) repair/transcription gene. Proc Natl Acad Sci USA 1997, 94: 8658–8663. 10.1073/pnas.94.16.8658

Nouspikel T: Nucleotide excision repair and neurological diseases. DNA Repair (Amst) 2008, 7: 1155–1167. 10.1016/j.dnarep.2008.03.015

van HA, Natarajan AT, Mayne LV, van Zeeland AA, Mullenders LH, Venema J: Deficient repair of the transcribed strand of active genes in Cockayne's syndrome cells. Nucleic Acids Res 1993, 21: 5890–5895. 10.1093/nar/21.25.5890

Bohr VA, Sander M, Kraemer KH: Rare diseases provide rare insights into DNA repair pathways, TFIIH, aging and cancer center. DNA Repair (Amst) 2005, 4: 293–302. 10.1016/j.dnarep.2004.09.010

Bergmann E, Egly JM: Trichothiodystrophy, a transcription syndrome. Trends Genet 2001, 17: 279–286. 10.1016/S0168-9525(01)02280-6

Botta E, Nardo T, Broughton BC, Marinoni S, Lehmann AR, Stefanini M: Analysis of mutations in the XPD gene in Italian patients with trichothiodystrophy: site of mutation correlates with repair deficiency, but gene dosage appears to determine clinical severity. Am J Hum Genet 1998, 63: 1036–1048. 10.1086/302063

Itin PH, Sarasin A, Pittelkow MR: Trichothiodystrophy: update on the sulfur-deficient brittle hair syndromes. J Am Acad Dermatol 2001, 44: 891–920. 10.1067/mjd.2001.114294

Broughton BC, Berneburg M, Fawcett H, Taylor EM, Arlett CF, Nardo T, et al.: Two individuals with features of both xeroderma pigmentosum and trichothiodystrophy highlight the complexity of the clinical outcomes of mutations in the XPD gene. Hum Mol Genet 2001, 10: 2539–2547. 10.1093/hmg/10.22.2539

Meira LB, Graham JM Jr, Greenberg CR, Busch DB, Doughty AT, Ziffer DW, et al.: Manitoba aboriginal kindred with original cerebro-oculo- facio-skeletal syndrome has a mutation in the Cockayne syndrome group B (CSB) gene. Am J Hum Genet 2000, 66: 1221–1228. 10.1086/302867

Rossignol M, Kolb-Cheynel I, Egly JM: Substrate specificity of the cdk-activating kinase (CAK) is altered upon association with TFIIH. EMBO J 1997, 16: 1628–1637. 10.1093/emboj/16.7.1628

Drapkin R, Le RG, Cho H, Akoulitchev S, Reinberg D: Human cyclin-dependent kinase-activating kinase exists in three distinct complexes. Proc Natl Acad Sci USA 1996, 93: 6488–6493. 10.1073/pnas.93.13.6488

Larochelle S, Chen J, Knights R, Pandur J, Morcillo P, Erdjument-Bromage H, et al.: T-loop phosphorylation stabilizes the CDK7-cyclin H-MAT1 complex in vivo and regulates its CTD kinase activity. EMBO J 2001, 20: 3749–3759. 10.1093/emboj/20.14.3749

Ito S, Tan LJ, Andoh D, Narita T, Seki M, Hirano Y, et al.: MMXD, a TFIIH-independent XPD-MMS19 protein complex involved in chromosome segregation. Mol Cell 2010, 39: 632–640. 10.1016/j.molcel.2010.07.029

Marini F, Nardo T, Giannattasio M, Minuzzo M, Stefanini M, Plevani P, et al.: DNA nucleotide excision repair-dependent signaling to checkpoint activation. Proc Natl Acad Sci USA 2006, 103: 17325–17330. 10.1073/pnas.0605446103

Glover-Cutter K, Larochelle S, Erickson B, Zhang C, Shokat K, Fisher RP, et al.: TFIIH-associated Cdk7 kinase functions in phosphorylation of C-terminal domain Ser7 residues, promoter-proximal pausing, and termination by RNA polymerase II. Mol Cell Biol 2009, 29: 5455–5464. 10.1128/MCB.00637-09

Keriel A, Stary A, Sarasin A, Rochette-Egly C, Egly JM: XPD mutations prevent TFIIH-dependent transactivation by nuclear receptors and phosphorylation of RARalpha. Cell 2002, 109: 125–135. 10.1016/S0092-8674(02)00692-X

Sano M, Izumi Y, Helenius K, Asakura M, Rossi DJ, Xie M, et al.: Menage-a-trois 1 is critical for the transcriptional function of PPARgamma coactivator 1. Cell Metab 2007, 5: 129–142. 10.1016/j.cmet.2007.01.003

Helenius K, Yang Y, Alasaari J, Makela TP: Mat1 inhibits peroxisome proliferator-activated receptor gamma-mediated adipocyte differentiation. Mol Cell Biol 2009, 29: 315–323. 10.1128/MCB.00347-08

Rossi DJ, Londesborough A, Korsisaari N, Pihlak A, Lehtonen E, Henkemeyer M, et al.: Inability to enter S phase and defective RNA polymerase II CTD phosphorylation in mice lacking Mat1. EMBO J 2001, 20: 2844–2856. 10.1093/emboj/20.11.2844

Coin F, Marinoni JC, Rodolfo C, Fribourg S, Pedrini AM, Egly JM: Mutations in the XPD helicase gene result in XP and TTD phenotypes, preventing interaction between XPD and the p44 subunit of TFIIH. Nat Genet 1998, 20: 184–188. 10.1038/2491

Larochelle S, Batliner J, Gamble MJ, Barboza NM, Kraybill BC, Blethrow JD, et al.: Dichotomous but stringent substrate selection by the dual-function Cdk7 complex revealed by chemical genetics. Nat Struct Mol Biol 2006, 13: 55–62. 10.1038/nsmb1028

Chen J, Larochelle S, Li X, Suter B: Xpd/Ercc2 regulates CAK activity and mitotic progression. Nature 2003, 424: 228–232. 10.1038/nature01746

Chen J, Suter B: Xpd, a structural bridge and a functional link. Cell Cycle 2003, 2: 503–506. 10.4161/cc.2.6.558

Ito S, Kuraoka I, Chymkowitch P, Compe E, Takedachi A, Ishigami C, et al.: XPG stabilizes TFIIH, allowing transactivation of nuclear receptors: implications for Cockayne syndrome in XP-G/CS patients. Mol Cell 2007, 26: 231–243. 10.1016/j.molcel.2007.03.013

Dubaele S, Proietti De SL, Bienstock RJ, Keriel A, Stefanini M, Van HB, et al.: Basal transcription defect discriminates between xeroderma pigmentosum and trichothiodystrophy in XPD patients. Mol Cell 2003, 11: 1635–1646. 10.1016/S1097-2765(03)00182-5

Singleton MR, Dillingham MS, Wigley DB: Structure and mechanism of helicases and nucleic acid translocases. Annu Rev Biochem 2007, 76: 23–50. 10.1146/annurev.biochem.76.052305.115300

Balajee AS, Bohr VA: Genomic heterogeneity of nucleotide excision repair. Gene 2000, 250: 15–30. 10.1016/S0378-1119(00)00172-4

Lindahl T, Wood RD: Quality control by DNA repair. Science 1999, 286: 1897–1905. 10.1126/science.286.5446.1897

McKinnon PJ: DNA repair deficiency and neurological disease. Nat Rev Neurosci 2009, 10: 100–112. 10.1038/nrn2559

Coin F, Oksenych V, Mocquet V, Groh S, Blattner C, Egly JM: Nucleotide excision repair driven by the dissociation of CAK from TFIIH. Mol Cell 2008, 31: 9–20. 10.1016/j.molcel.2008.04.024

Sandrock B, Egly JM: A yeast four-hybrid system identifies Cdk-activating kinase as a regulator of the XPD helicase, a subunit of transcription factor IIH. J Biol Chem 2001, 276: 35328–35333. 10.1074/jbc.M105570200

Tirode F, Busso D, Coin F, Egly JM: Reconstitution of the transcription factor TFIIH: assignment of functions for the three enzymatic subunits, XPB, XPD, and cdk7. Mol Cell 1999, 3: 87–95. 10.1016/S1097-2765(00)80177-X

Makela TP, Parvin JD, Kim J, Huber LJ, Sharp PA, Weinberg RA: A kinase-deficient transcription factor TFIIH is functional in basal and activated transcription. Proc Natl Acad Sci USA 1995, 92: 5174–5178. 10.1073/pnas.92.11.5174

Serizawa H, Conaway JW, Conaway RC: Phosphorylation of C-terminal domain of RNA polymerase II is not required in basal transcription. Nature 1993, 363: 371–374. 10.1038/363371a0

Larochelle S, Pandur J, Fisher RP, Salz HK, Suter B: Cdk7 is essential for mitosis and for in vivo Cdk-activating kinase activity. Genes Dev 1998, 12: 370–381. 10.1101/gad.12.3.370

Price DH: Regulation of RNA polymerase II elongation by c-Myc. Cell 2010, 141: 399–400. 10.1016/j.cell.2010.04.016

Glover-Cutter K, Kim S, Espinosa J, Bentley DL: RNA polymerase II pauses and associates with pre-mRNA processing factors at both ends of genes. Nat Struct Mol Biol 2008, 15: 71–78. 10.1038/nsmb1352

Schwartz BE, Larochelle S, Suter B, Lis JT: Cdk7 is required for full activation of Drosophila heat shock genes and RNA polymerase II phosphorylation in vivo. Mol Cell Biol 2003, 23: 6876–6886. 10.1128/MCB.23.19.6876-6886.2003

da Costa RM, Riou L, Paquola A, Menck CF, Sarasin A: Transcriptional profiles of unirradiated or UV-irradiated human cells expressing either the cancer-prone XPB/CS allele or the noncancer-prone XPB/TTD allele. Oncogene 2005, 24: 1359–1374. 10.1038/sj.onc.1208288

Botta E, Nardo T, Lehmann AR, Egly JM, Pedrini AM, Stefanini M: Reduced level of the repair/transcription factor TFIIH in trichothiodystrophy. Hum Mol Genet 2002, 11: 2919–2928. 10.1093/hmg/11.23.2919

Woodbury EL, Morgan DO: Cdk and APC activities limit the spindle-stabilizing function of Fin1 to anaphase. Nat Cell Biol 2007, 9: 106–112. 10.1038/ncb1523

Edgar BA: Cell cycle. Cell-cycle control in a developmental context. Curr Biol 1994, 4: 522–524. 10.1016/S0960-9822(00)00113-5

Larochelle S, Merrick KA, Terret ME, Wohlbold L, Barboza NM, Zhang C, et al.: Requirements for Cdk7 in the assembly of Cdk1/cyclin B and activation of Cdk2 revealed by chemical genetics in human cells. Mol Cell 2007, 25: 839–850. 10.1016/j.molcel.2007.02.003

Edgar BA, Sprenger F, Duronio RJ, Leopold P, O'Farrell PH: Distinct molecular mechanism regulate cell cycle timing at successive stages of Drosophila embryogenesis. Genes Dev 1994, 8: 440–452. 10.1101/gad.8.4.440

Branzei D, Foiani M: Regulation of DNA repair throughout the cell cycle. Nat Rev Mol Cell Biol 2008, 9: 297–308. 10.1038/nrm2351

Lukas J, Lukas C, Bartek J: Mammalian cell cycle checkpoints: signalling pathways and their organization in space and time. DNA Repair (Amst) 2004, 3: 997–1007. 10.1016/j.dnarep.2004.03.006

Zhou BB, Elledge SJ: The DNA damage response: putting checkpoints in perspective. Nature 2000, 408: 433–439. 10.1038/35044005

Schumacher B, Garinis GA, Hoeijmakers JH: Age to survive: DNA damage and aging. Trends Genet 2008, 24: 77–85. 10.1016/j.tig.2007.11.004

Wu X, Shell SM, Yang Z, Zou Y: Phosphorylation of nucleotide excision repair factor xeroderma pigmentosum group A by ataxia telangiectasia mutated and Rad3-related-dependent checkpoint pathway promotes cell survival in response to UV irradiation. Cancer Res 2006, 66: 2997–3005. 10.1158/0008-5472.CAN-05-3403

Hwang BJ, Ford JM, Hanawalt PC, Chu G: Expression of the p48 xeroderma pigmentosum gene is p53-dependent and is involved in global genomic repair. Proc Natl Acad Sci USA 1999, 96: 424–428. 10.1073/pnas.96.2.424

Wang XW, Yeh H, Schaeffer L, Roy R, Moncollin V, Egly JM, et al.: p53 modulation of TFIIH-associated nucleotide excision repair activity. Nat Genet 1995, 10: 188–195. 10.1038/ng0695-188

Wang XW, Vermeulen W, Coursen JD, Gibson M, Lupold SE, Forrester K, et al.: The XPB and XPD DNA helicases are components of the p53-mediated apoptosis pathway. Genes Dev 1996, 10: 1219–1232. 10.1101/gad.10.10.1219

Ko LJ, Shieh SY, Chen X, Jayaraman L, Tamai K, Taya Y, et al.: p53 is phosphorylated by CDK7-cyclin H in a p36MAT1-dependent manner. Mol Cell Biol 1997, 17: 7220–7229.

Weber A, Liu J, Collins I, Levens D: TFIIH operates through an expanded proximal promoter to fine-tune c-myc expression. Mol Cell Biol 2005, 25: 147–161. 10.1128/MCB.25.1.147-161.2005

Liu J, Akoulitchev S, Weber A, Ge H, Chuikov S, Libutti D, et al.: Defective interplay of activators and repressors with TFIH in xeroderma pigmentosum. Cell 2001, 104: 353–363. 10.1016/S0092-8674(01)00223-9

Liu J, Kouzine F, Nie Z, Chung HJ, Elisha-Feil Z, Weber A, et al.: The FUSE/FBP/FIR/TFIIH system is a molecular machine programming a pulse of c-myc expression. EMBO J 2006, 25: 2119–2130. 10.1038/sj.emboj.7601101

Vervoorts J, Luscher-Firzlaff J, Luscher B: The ins and outs of MYC regulation by posttranslational mechanisms. J Biol Chem 2006, 281: 34725–34729. 10.1074/jbc.R600017200

Cotter TG: Apoptosis and cancer: the genesis of a research field. Nat Rev Cancer 2009, 9: 501–507. 10.1038/nrc2663

Cowling VH, Cole MD: HATs off to capping: a new mechanism for Myc. Cell Cycle 2007, 6: 907–909. 10.4161/cc.6.21.4880

Cowling VH, Cole MD: The Myc transactivation domain promotes global phosphorylation of the RNA polymerase II carboxy-terminal domain independently of direct DNA binding. Mol Cell Biol 2007, 27: 2059–2073. 10.1128/MCB.01828-06

Staller P, Peukert K, Kiermaier A, Seoane J, Lukas J, Karsunky H, et al.: Repression of p15INK4b expression by Myc through association with Miz-1. Nat Cell Biol 2001, 3: 392–399. 10.1038/35070076

Bootsma D, Hoeijmakers JH: DNA repair. Engagement with transcription. Nature 1993, 363: 114–115. 10.1038/363114a0

de WH, de WJ, Andressoo JO, van Oostrom CT, Riis B, Weimann A, et al.: Different effects of CSA and CSB deficiency on sensitivity to oxidative DNA damage. Mol Cell Biol 2004, 24: 7941–7948. 10.1128/MCB.24.15.6850-6860.2004

Lehmann AR, Niimi A, Ogi T, Brown S, Sabbioneda S, Wing JF, et al.: Translesion synthesis: Y-family polymerases and the polymerase switch. DNA Repair (Amst) 2007, 6: 891–899. 10.1016/j.dnarep.2007.02.003

Boyle J, Ueda T, Oh KS, Imoto K, Tamura D, Jagdeo J, et al.: Persistence of repair proteins at unrepaired DNA damage distinguishes diseases with ERCC2 (XPD) mutations: cancer-prone xeroderma pigmentosum vs. non-cancer-prone trichothiodystrophy. Hum Mutat 2008, 29: 1194–1208. 10.1002/humu.20768

Berneburg M, Lowe JE, Nardo T, Araujo S, Fousteri MI, Green MH, et al.: UV damage causes uncontrolled DNA breakage in cells from patients with combined features of XP-D and Cockayne syndrome. EMBO J 2000, 19: 1157–1166. 10.1093/emboj/19.5.1157

Nowak MA, Komarova NL, Sengupta A, Jallepalli PV, Shih I, Vogelstein B, et al.: The role of chromosomal instability in tumor initiation. Proc Natl Acad Sci USA 2002, 99: 16226–16231. 10.1073/pnas.202617399

Garinis GA, van der Horst GT, Vijg J, Hoeijmakers JH: DNA damage and ageing: new-age ideas for an age-old problem. Nat Cell Biol 2008, 10: 1241–1247. 10.1038/ncb1108-1241

Liu B, Wang J, Chan KM, Tjia WM, Deng W, Guan X, et al.: Genomic instability in laminopathy-based premature aging. Nat Med 2005, 11: 780–785. 10.1038/nm1266

Campisi J: Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 2005, 120: 513–522. 10.1016/j.cell.2005.02.003

Chen D, Riedl T, Washbrook E, Pace PE, Coombes RC, Egly JM, et al.: Activation of estrogen receptor alpha by S118 phosphorylation involves a ligand-dependent interaction with TFIIH and participation of CDK7. Mol Cell 2000, 6: 127–137. 10.1016/S1097-2765(00)00014-9

Campbell RM, Digiovanna JJ: Skin cancer chemoprevention with systemic retinoids: an adjunct in the management of selected high-risk patients. Dermatol Ther 2006, 19: 306–314. 10.1111/j.1529-8019.2006.00088.x

Benhamou S, Sarasin A: ERCC2/XPD gene polymorphisms and cancer risk. Mutagenesis 2002, 17: 463–469. 10.1093/mutage/17.6.463

Compe E, Malerba M, Soler L, Marescaux J, Borrelli E, Egly JM: Neurological defects in trichothiodystrophy reveal a coactivator function of TFIIH. Nat Neurosci 2007, 10: 1414–1422. 10.1038/nn1990

Moodycliffe AM, Nghiem D, Clydesdale G, Ullrich SE: Immune suppression and skin cancer development: regulation by NKT cells. Nat Immunol 2000, 1: 521–525. 10.1038/82782

Lehmann AR, Norris PG: DNA repair and cancer: speculations based on studies with xeroderma pigmentosum, Cockayne's syndrome and trichothiodystrophy. Carcinogenesis 1989, 10: 1353–1356. 10.1093/carcin/10.8.1353

Norris PG, Limb GA, Hamblin AS, Hawk JL: Impairment of natural-killer-cell activity in xeroderma pigmentosum. N Engl J Med 1988, 319: 1668–1669. 10.1056/NEJM198812223192512

Gaspari AA, Fleisher TA, Kraemer KH: Impaired interferon production and natural killer cell activation in patients with the skin cancer-prone disorder, xeroderma pigmentosum. J Clin Invest 1993, 92: 1135–1142. 10.1172/JCI116682

Mariani E, Facchini A, Honorati MC, Lalli E, Berardesca E, Ghetti P, et al.: Immune defects in families and patients with xeroderma pigmentosum and trichothiodystrophy. Clin Exp Immunol 1992, 88: 376–382. 10.1111/j.1365-2249.1992.tb06457.x

Gasser S, Raulet D: The DNA damage response, immunity and cancer. Semin Cancer Biol 2006, 16: 344–347. 10.1016/j.semcancer.2006.07.004

Andressoo JO, Mitchell JR, de WJ, Hoogstraten D, Volker M, Toussaint W, et al.: An Xpd mouse model for the combined xeroderma pigmentosum/Cockayne syndrome exhibiting both cancer predisposition and segmental progeria. Cancer Cell 2006, 10: 121–132. 10.1016/j.ccr.2006.05.027

Itoh M, Hayashi M, Shioda K, Minagawa M, Isa F, Tamagawa K, et al.: Neurodegeneration in hereditary nucleotide repair disorders. Brain Dev 1999, 21: 326–333. 10.1016/S0387-7604(99)00033-9

Brooks PJ, Cheng TF, Cooper L: Do all of the neurologic diseases in patients with DNA repair gene mutations result from the accumulation of DNA damage? DNA Repair (Amst) 2008, 7: 834–848. 10.1016/j.dnarep.2008.01.017

Anolik JH, Di Giovanna JJ, Gaspari AA: Effect of isotretinoin therapy on natural killer cell activity in patients with xeroderma pigmentosum. Br J Dermatol 1998, 138: 236–241. 10.1046/j.1365-2133.1998.02067.x

Cleaver JE, Thompson LH, Richardson AS, States JC: A summary of mutations in the UV-sensitive disorders: xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy. Hum Mutat 1999, 14: 9–22. 10.1002/(SICI)1098-1004(1999)14:1<9::AID-HUMU2>3.0.CO;2-6