On the polyhedral lift-and-project methods and the fractional stable set polytope
Tài liệu tham khảo
Bienstock, 2004, Subset algebra lift operators for 0-1 integer programming, SIAM J. Optim., 15, 63, 10.1137/S1052623402420346
Cook, 2001, On the matrix-cut rank of polyhedra, Math. Oper. Res., 26, 19, 10.1287/moor.26.1.19.10593
Cornuéjols, 2008, Valid inequalities for mixed integer linear programs, Math. Program., 112, 3, 10.1007/s10107-006-0086-0
Cornuéjols, 2001, Elementary closures for integer programs, Oper. Res. Lett., 28, 1, 10.1016/S0167-6377(00)00067-5
de Klerk, 2002, Approximation of the stability number of a graph via copositive programming, SIAM J. Optim., 12, 875, 10.1137/S1052623401383248
Goemans, 2001, When does the positive semidefiniteness constraint help in lifting procedures, Math. Oper. Res., 26, 796, 10.1287/moor.26.4.796.10012
Laurent, 2003, A comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre relaxations for 0-1 programming, Math. Oper. Res., 28, 470, 10.1287/moor.28.3.470.16391
L. Lipták, Critical facets of the stable set polytope, Ph.D. Thesis, Yale University, 1999
Lipták, 2003, Stable set problem and the lift-and-project ranks of graphs, Math. Program., 98, 319, 10.1007/s10107-003-0407-5
Lovász, 1991, Cones of matrices and set-functions and 0-1 optimization, SIAM J. Optim., 1, 166, 10.1137/0801013
Peña, 2007, Computing the stability number of a graph via linear and semidefinite programming, SIAM J. Optim., 18, 87, 10.1137/05064401X
Sherali, 1999, 31
Sherali, 1990, A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems, SIAM J. Discrete Math., 3, 411, 10.1137/0403036