On the polyhedral lift-and-project methods and the fractional stable set polytope

Discrete Optimization - Tập 6 - Trang 206-213 - 2009
Yu-Hin Au1, Levent Tunçel1
1Department of Combinatorics and Optimization Faculty of Mathematics University of Waterloo Waterloo, Ontario N2L 3G1, Canada

Tài liệu tham khảo

Bienstock, 2004, Subset algebra lift operators for 0-1 integer programming, SIAM J. Optim., 15, 63, 10.1137/S1052623402420346

Cook, 2001, On the matrix-cut rank of polyhedra, Math. Oper. Res., 26, 19, 10.1287/moor.26.1.19.10593

Cornuéjols, 2008, Valid inequalities for mixed integer linear programs, Math. Program., 112, 3, 10.1007/s10107-006-0086-0

Cornuéjols, 2001, Elementary closures for integer programs, Oper. Res. Lett., 28, 1, 10.1016/S0167-6377(00)00067-5

de Klerk, 2002, Approximation of the stability number of a graph via copositive programming, SIAM J. Optim., 12, 875, 10.1137/S1052623401383248

Goemans, 2001, When does the positive semidefiniteness constraint help in lifting procedures, Math. Oper. Res., 26, 796, 10.1287/moor.26.4.796.10012

Laurent, 2003, A comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre relaxations for 0-1 programming, Math. Oper. Res., 28, 470, 10.1287/moor.28.3.470.16391

L. Lipták, Critical facets of the stable set polytope, Ph.D. Thesis, Yale University, 1999

Lipták, 2003, Stable set problem and the lift-and-project ranks of graphs, Math. Program., 98, 319, 10.1007/s10107-003-0407-5

Lovász, 1991, Cones of matrices and set-functions and 0-1 optimization, SIAM J. Optim., 1, 166, 10.1137/0801013

Peña, 2007, Computing the stability number of a graph via linear and semidefinite programming, SIAM J. Optim., 18, 87, 10.1137/05064401X

Sherali, 1999, 31

Sherali, 1990, A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems, SIAM J. Discrete Math., 3, 411, 10.1137/0403036

Stephen, 1999, On a representation of the matching polytope via semidefinite liftings, Math. Oper. Res., 24, 1, 10.1287/moor.24.1.1