Tree-width and the Sherali–Adams operator

Discrete Optimization - Tập 1 - Trang 13-21 - 2004
Daniel Bienstock1, Nuri Ozbay1
1Department of Industrial Engineering & OR, Columbia University, New York, NY 10027, USA

Tài liệu tham khảo

Arnborg, 1991, Easy problems for tree-decomposable graphs, J. Algorithms, 2, 308, 10.1016/0196-6774(91)90006-K Balas, 1979, Disjunctive programming, Ann. Discrete Math., 5, 3, 10.1016/S0167-5060(08)70342-X D. Bienstock, M. Zuckerberg, Subset algebra lift operators for 0–1 integer programming, SIAM J. Optim., to appear. Cheng, 1997, Wheel inequalities for stable set polytopes, Math. Programming, 77, 389, 10.1007/BF02614623 Cheng, 2002, Antiweb-wheel inequalities and their separation problems over the stable set polytopes, Math. Programming, 92, 153, 10.1007/s101070100267 Cook, 2001, On the matrix-cut rank of polyhedra, Math. Oper. Res., 26, 19, 10.1287/moor.26.1.19.10593 W.J. Cook, P.D. Seymour, An algorithm for the ring-router problem, Technical Report, Bellcore, 1994. Cook, 2003, Tour merging via branch decomposition, INFORMS J. Comput., 21, 233, 10.1287/ijoc.15.3.233.16078 Cornuéjols, 2002, On the rank of mixed 0–1 polyhedra, Math. Programming, 92, 391, 10.1007/s101070100291 Euler, 1987, Generalizations of cliques, odd cycles and anticyles and their relation to independence system polyhedra, Math. Oper. Res., 12, 451, 10.1287/moor.12.3.451 Goemans, 2001, When does the positive semidefiniteness constraint help in lifting procedures?, Math. Oper. Res., 26, 796, 10.1287/moor.26.4.796.10012 Hicks, 2004, Branch decompositions and minor containment, Networks, 43, 1, 10.1002/net.10099 J.B. Lasserre, An explicit exact SDP relaxation for nonlinear 0–1 programs, in: K. Aardal, A.M.H. Gerards (Eds.), Lecture Notes in Computer Science, Springer, Berlin, 2001, pp. 293–303. Laurent, 2003, A comparison of the Sherali–Adams, Lovász–Schrijver and Lasserre relaxations for 0–1 programming, Math. Oper. Res., 28, 470, 10.1287/moor.28.3.470.16391 Lipták, 2003, Stable set problems and graph ranks, Math. Programming, 98, 319, 10.1007/s10107-003-0407-5 Lovász, 1991, Cones of matrices and set-functions and 0–1 optimization, SIAM J. Optim., 1, 166, 10.1137/0801013 R. Müller, A.S. Schulz, Transitive packing, in: W. Cunningham, T. McCormick, M. Queyranne (Eds.), Proceedings of the Fifth IPCO, Lecture Notes in Computer Science, Vol. 1084, 1996, pp. 430–444. B. Reed, Tree width and tangles: a new connectivity measure and some applications, in: London Mathematical Society Lecture Note Series, Vol. 241, Cambridge University Press, Cambridge, 1997, pp. 87–162. Robertson, 1986, Graph minors II, J. Algorithms, 7, 309, 10.1016/0196-6774(86)90023-4 A.S. Schulz, Polytopes and scheduling, Ph.D. Thesis, TU Berlin, 1996. Sherali, 1990, A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems, SIAM J. Discrete Math., 3, 411, 10.1137/0403036 Trotter, 1975, A class of facet producing graphs for vertex packing polyhedra, Discrete Math., 12, 373, 10.1016/0012-365X(75)90077-1