Numerical Resolution of McKean-Vlasov FBSDEs Using Neural Networks
Tóm tắt
Tài liệu tham khảo
Achdou Y, Capuzzo-Dolcetta I (2010) Mean field games: Numerical methods. SIAM J Num Analysis 48. https://doi.org/10.1137/090758477
Achdou Y, Kobeissi Z (2020) Mean field games of controls: Finite difference approximations. arXiv:200303968
Angiuli A, Graves CV, Li H, Chassagneux JF, Delarue F, Carmona R (2019) Cemracs 2017: Numerical probabilistic approach to MFG. ESAIM: Proc Surv 65:84–113. https://doi.org/10.1051/proc/201965084
Bachouch A, Huré C, Pham H, Langrené N (2021) Deep neural networks algorithms for stochastic control problems on finite horizon: Numerical computations. Methodol Comput Appl Probab. https://doi.org/10.1007/s11009-019-09767-9
Beck C, Becker S, Cheridito P, Jentzen A, Neufeld A (2019a) Deep splitting method for parabolic PDEs. arXiv preprint: arXiv:190703452
Bouchard B, Touzi N (2004) Discrete-time approximation and monte-carlo simulation of backward stochastic differential equations. Stochastic Process Appl 111(2):175–206. https://doi.org/10.1016/j.spa.2004.01.001
Cardaliaguet P, Lehalle CA (2018) Mean field game of controls and an application to trade crowding. Math Financial Econ 12(3):335–363. https://doi.org/10.1007/s11579-017-0206-z
Carmona R, Delarue F (2013) Probabilistic analysis of mean-field games. SIAM J Control Optim 51(4):2705–2734. https://doi.org/10.1137/120883499
Carmona R, Delarue F (2018a) Probabilistic theory of mean field games with applications I. Springer. https://doi.org/10.1007/978-3-319-58920-6
Carmona R, Delarue F (2018b) Probabilistic theory of mean field games with applications II. Springer. https://doi.org/10.1007/978-3-319-56436-4
Carmona R, Lacker D (2015) A probabilistic weak formulation of mean field games and applications. Ann Appl Prob 25(3):1189–1231. https://doi.org/10.1214/14-AAP1020
Chassagneux JF, Crisan D, Delarue F (2019) Numerical method for FBSDEs of McKean-Vlasov type. Ann Appl Prob 29. https://doi.org/10.1214/18-AAP1429
Fouque JP, Zhang Z (2020) Deep learning methods for mean field control problems with delay. Front Appl Math Stat 6. https://doi.org/10.3389/fams.2020.00011
Gobet E, Lemor JP, Warin X (2005) A regression-based monte carlo method to solve backward stochastic differential equations. Ann Appl Probab 15(3):2172–2202. https://doi.org/10.1214/105051605000000412
Han J, Jentzen A, Weinan E (2017) Solving high-dimensional partial differential equations using deep learning. Proc Nat Acad Sci 115. https://doi.org/10.1073/pnas.1718942115
Huré C, Pham H, Warin X (2020) Deep backward schemes for high-dimensional nonlinear PDEs. Math Comput 89(324):1547–1579. https://doi.org/10.1090/mcom/3514
Huré C, Pham H, Bachouch A, Langrené N (2021) Deep neural networks algorithms for stochastic control problems on finite horizon: convergence analysis. SIAM J Numer Anal 59(1):525–557. https://doi.org/10.1137/20M1316640
Ji S, Peng S, Peng Y, Zhang X (2020) Three algorithms for solving high-dimensional fully coupled FBSDEs through deep learning. IEEE Intell Syst 35(3):71–84. https://doi.org/10.1109/MIS.2020.2971597
Kingma D, Ba J (2015) Adam: A method for stochastic optimization. International Conference on Learning Representations
Lauriere M (2021) Numerical methods for mean field games and mean field type control. arXiv:210606231