Neural networks-based backward scheme for fully nonlinear PDEs
Tóm tắt
Từ khóa
Tài liệu tham khảo
Al-Aradi, A. et al. “Solving Nonlinear and High-Dimensional Partial Differential Equations via Deep Learning”. In: arXiv:1811.08782 (2018)
Abadi, M. et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensor ow.org. 2015. https://www.tensorflow.org/
Beck, C. et al. “Deep splitting method for parabolic PDEs”. In: arXiv:1907.03452 (2019)
Beck, C., E, W., Jentzen, A.: “Machine learning approximation algorithms for high- dimensional fully nonlinear partial differential equations and second-order backward stochastic differential equations”. In: J. Nonlinear Sci. 29.4 (2019), pp. 1563–1619
Cheridito, P., et al.: Second-order backward stochastic differential equations and fully nonlinear parabolic PDEs. Commun. Pure Appl. Math. 60(7), 1081–1110 (2007)
Chan-Wai-Nam, Quentin, Mikael, Joseph, Warin, Xavier: Machine learning for semi linear PDEs. J. Sci. Comput. 79(3), 1667–1712 (2019)
Darbon, J., Langlois, G., Meng, T.: “Overcoming the curse of dimensionality for some Hamilton–Jacobi partial differential equations via neural network architectures”. In: Res Math Sci 7 (2020)
E, W., Han, J., Jentzen, A.: “Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations”. In: Com- munications in Mathematics and Statistics 5.4 (2017), pp. 349–380
Fahim, A., Touzi, N., Warin, X.: “A probabilistic numerical method for fully nonlinear parabolic PDEs”. In: The Annals of Applied Probability (2011), pp. 1322–1364
Han, J., Jentzen, A., E, W., : Solving high-dimensional partial differential equations using deep learning. Proc Natl Acad Sci USA 115(34), 8505–8510 (2018)
Huré, Côme, Pham, Huyên, Warin, Xavier: Deep backward schemes for high-dimensional nonlinear PDEs. Math Comput 89(324), 1547–1579 (2020)
Hutzenthaler, M. et al. “Overcoming the curse of dimensionality in the numerical approximation of semilinear parabolic partial differential equations”. In: arXiv:1807.01212 (2018)
Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. Published as a conference paper at the 3rd International Conference for Learning Representations, San Diego, 2015. 2014. arXiv:1412.6980
Nüsken, N., Richter, L.: “Solving high-dimensional Hamilton-Jacobi-Bellman PDEs using neural networks: perspectives from the theory of controlled diffusions and measures on path space”. In: arXiv:2005.05409 (2020)
Pham, H.: Continuous-time Stochastic Control and Optimization with Financial Applications, vol. 61. Springer, SMAP, Berlin (2009)
Pinkus, A.: “Approximation theory of the MLP model in neural networks”. In: Acta numerica 8 (1999), pp. 143–195. 20
Pardoux, E., Peng, S.: Adapted solution of a backward stochastic differential equation. Syst. Control Lett. 14(1), 55–61 (1990)
Sirignano, J., Spiliopoulos, K.: DGM: a deep learning algorithm for solving partial differential equations. J. Comput. Phys. 375, 1339–1364 (2018)
Schöbel, R., Zhu, J.: Stochastic volatility with an Ornstein-Uhlenbeck process and extension. Rev. Finance 3(1), 23–46 (1999)
Tan, X.: “A splitting method for fully nonlinear degenerate parabolic PDEs”. In: Electronic Journal of Probability 18 (2013)
Sabate Vidales, M., Siska, D., Szpruch, L.: “Unbiased deep solvers for parametric PDEs”. In: arXiv:1810.05094v2 (2018)
Warin, X.: “Monte Carlo for high-dimensional degenerated Semi Linear and Full Non Linear PDEs”. In: arXiv:1805.05078 (2018)